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Abstract

We study one point statistical properties of the induced turbulent electric

�eld for a magnetohydrodynamic (MHD) plasma under the quasi-normal ap-

proximation. Assuming exact Gaussianity for both the velocity �eld and the

magnetic �eld, and di�erent degrees of correlations between their Cartesian

components, we derive the probability distribution function (PDF) for the

Cartesian components of the electric �eld, ei. We show that the PDF reduces

in some canonical cases to an exponential function of the form exp(�jeij).

To study deviations from these results in the more realistic case in which

the velocity and magnetic �elds are not exactly normal but quasi-normal

instead, we perform three dimensional numerical simulations of the MHD

equations at moderate Reynolds numbers. For turbulent relaxation from an

initial condition, we �nd that the analytical results give a very good �rst order

approximation to the computed PDF.

I. INTRODUCTION

The induced electric �eld plays a key role in the slow evolution of a plasma. Such an

evolution is usually described by the magnetohydrodynamic (MHD) equations. In these

equations, the electric �eld E is eliminated in terms of the magnetic �eld B by means of a

simpli�ed Ohm's Law:
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E = �V �B+ �j (1)

where � is the resistivity, j = r�B is the electric current and V is the velocity �eld. The

�rst term in the r.h.s. of Eq. (1) is referred to as the induced electric �eld. Ohm's law allows

to write the MHD induction equation:

@tB = r� (V�B) + �r2B; (2)

which states that the time evolution of the magnetic �eld is governed by the curl of the

induced electric �eld.

Here we study the statistical properties of the induced electric �eld in fully developed

MHD turbulence. In this scenario, both the velocity and the magnetic �eld are usually mod-

eled as homogeneous, isotropic random variables. Nonetheless, in more realistic situations

the dynamical �elds need to be decomposed as:

V = V0 + v (3)

B = B0 + b (4)

where V0 = hVi, B0 = hBi and the h i operator denotes an ensemble average. Note that,

by de�nition,

hvi = 0 = hbi (5)

It is important to note that the statistical behavior of v and b exerts an inuence on the

evolution of the mean �elds. For instance, taking the ensemble average of Eq. (2) we obtain:

@tB0 = r� (V0 �B0) +r� hv� bi+ �r2B0; (6)

The second term in the r.h.s. of Eq. (6) reects the action of the mean induced electric �eld

of the uctuations on the mean magnetic �eld. This term is responsible for the generation

of large scale magnetic �elds from a turbulent velocity �eld, a phenomenon known as the

\dynamo e�ect" (see for instance [1]). It is this uctuating component of the electric �eld,
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e = �v � b; (7)

that we are interested in in this paper. In principle, all the one point statistical properties

of e can be derived from its Probability Distribution Function (PDF). The PDF for e, in

turn, may be computed in terms of the joint PDFs for v and b. As a natural starting point,

we assume that both v and b are Gaussian random variables.

It has been long known that the velocity �eld in uid turbulence may be regarded as

a quasi-normal, random (vector) variable. Early experiments (see for example Ref. [2])

demonstrated that the PDFs for the components of the velocity �eld are very close to

Gaussian distributions, and that the Kurtosis (K(x) = hx4i=hx2i2, where hxi = 0) of these

components is accordingly very close to the Gaussian value of 3. This result is also valid in

MHD, where both v and b are approximately Gaussian (see for instance [3]). There is also

substantial direct observational evidence that the magnetic �eld uctuations in the solar

wind are normal to a good approximation [4,5] It is worth mentioning that many closure

theories for turbulence, such as the EDQNM model (see for instance [3] for a review) rely

on the quasi-normal approximation [6,7], which consists of the assumption that forth order

moments of the �elds v and b are exactly Gaussian, which closes the in�nite hierarchy of

statistical moments. Here, instead, we simply assume exact Gaussianity of these �elds for

the sole purpose of obtaining an approximate PDF for the electric �eld. How far or how

close the measured or observed electric �eld is from the approximate analytical result we

�nd, is a matter of further work. Our preliminary numerical results seem to show that at

least for moderate Reynolds numbers the approximation is fairly good.

II. ANALYTICAL MODEL FOR THE PDF OF THE INDUCED ELECTRIC

FIELD

We want to obtain an expression for the PDF of any component of e, say

el = vibj � vjbi (8)

3



where the cyclic indices fl; i; jg all take di�erent values between 1 and 3, according to

e = �v � b. For simplicity in the notation, we will consider a random variable z of the

form:

z � x1x2 � x3x4; (9)

which simply reects the change in variables: fel; vi; bj; vj; big ! fz; x1; x2; x3; x4g. An

important simpli�cation comes from the hypothesis of variance isotropy [8](that we will use

throughout the paper, unless explicitly stated). Variance isotropy, that is, �vi = �vj and

�bi = �bj for all i; j = 1; 2; 3 implies �vi�bj = �vj�bi , or in terms of Eq. (9),

�1�2 = �3�4 (10)

where �x = �(x) stands for the standard deviation of x and �i � �(xi).

A. Uncorrelated Gaussians

Calculations are much simpli�ed under the hypothesis of statistical independence of the

variables x1; x2; x3; x4. A �rst point to note is that if x1 and x2 are independent, then:

h(x1x2)ni = hxn1 ihx
n
2 i (11)

This expression in turn simpli�es the calculation of the moments of combinations of the

various fxig. In particular:

�(x1x2) = �1�2; (12)

K(x1x2) = K1K2 = 9; (13)

�(x1x2 � x3x4) =
p
2�1�2; (14)

K(x1x2 � x3x4) =
1

2
K1K2 +

3

2
= 6; (15)
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where Kx = K(x) is the Kurtosis of x and Ki � K(xi). The numerical values given for the

Kurtosis only hold when the variables fxig are all Gaussians, in which case Ki = 3 for all i.

We now compute the PDF for a component of the electric �eld. We proceed in two steps:

we �rst compute the PDF for a variable of the form:

s � x1x2; (16)

and we then proceed to compute the distribution of:

z � s1 � s2; (17)

where s1 and s2 are both of the form Eq. (16). We use Eq. (A3) from Appendix A:

f(s) =

Z
f1(x1)f2(x2)Æ(s� x1x2)dx1dx2 =

Z
f1(x1)f2(s=x1)

dx1

jx1j
(18)

where f(x) stands for the PDF of the random variable x, fi � f(xi) and we used the relation

Æ(s � x1x2) = jx1j�1Æ(x2 � s=x1). Note that in Eq. (18) we made use of the statistical

independence to write f(x1; x2) = f1(x1)f2(x2). We now replace f1 and f2 in the integral

by Gaussians of dispersions �1 and �2:

fi �
1

p
2��i

exp

"
�
1

2

�
xi

�i

�2#
(19)

Assuming s > 0, we change variables x1 ! u � x1=(�1
p
2s), so that the integral Eq. (18)

reads:

f(s) =
1

��s

Z
1

0
exp

"
�s

 
u
2 +

1

4�2su
2

!#
du

u
=

1

��s
K0

�
s

�s

�
; s > 0; (20)

where �s � �1�2 (see Eq. (12)) and K0(x) is a modi�ed Bessel function of the second kind.

It is evident that f(s) is an even function of s (f(s) = f(�s)), so we can replace s! jsj to

obtain:

f(s) =
1

��s
K0

 
jsj
�s

!
: (21)

We can now compute moments of arbitrary (even) order (odd moments vanish):
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hsni =
1

��s

Z
s
n
K0(

jsj
�s
) ds = �

n
s [(n� 1)!!]2 (22)

As a consistency check, we note that the same result can be obtained from Eq. (11) and the

well known result for even moments of a Gaussian variable. Also, Eq. (22) implies Ks = 9,

in agreement with Eq. (13).

Now we are in a position of �nding the PDF for the components of the induced

electric �eld. We consider a variable of the form (see Eq. (17)) z = s1 � s2, where

fi(si) = (1=��si)K0(jsij=�si). In this case, Eq. (A3) yields:

f(z) =

Z
f1(s1)f2(s2)Æ(z � s1 + s2) ds1 ds2 =

Z
f1(s1)f2(z � s1)ds1 (23)

where we used the parity of f2. We immediately notice that the problem reduces to the

convolution of two K0 functions. The convolution theorem for cosine Fourier transforms for

even functions f1 and f2, reads:

1

2

Z
f1(s)f2(z � s)ds =

r
�

2
F
�1[F (f1)F (f2)]; (24)

where F stands for the cosine Fourier transform. The direct transforms of Eq. (21) are

straightforward. Assuming z > 0,

F (fi) =
1

p
2�
q
1 + (k�si)

2
; i = 1; 2: (25)

If �s1 = �s2 (which is ensured by the variance isotropy condition, Eq. (10)), we can compute

the inverse transform in Eqs.(23)-(24):

f(z) =
1

2�s1
exp

 
�
z

�s1

!
; z > 0: (26)

But we know that f(z) = f(�z), so we can write in general (see Eqs. (8),(9))

f(el) =
1

p
2�el

exp

 
�
p
2

�el

jelj
!
; (27)

where, according to Eq. (14),

�el =
p
2�vi�vj ; i 6= j: (28)

It can be checked by simple integration from Eq. (27) that f(el) is properly normalized, and

that the standard deviation of el is precisely �el.
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B. Dynamo-type correlated Gaussians

There are at least two cases in which the hypothesis of statistical independence of the

variables x1; x2; x3; x4 is inconsistent with the physical situation: (a) in the presence of cross

helicity Hc � hv � bi and (b) in the presence of an eÆcient dynamo. This inconsistency is

evident in the former case, since statistical independence implies Hc = hvibii = hviihbii = 0

(where we used Eq. (5) and the standard repeated index summation notation). In the latter

case, the most relevant quantity is the mean induced electric �eld of the uctuations, which

is precisely hei = �hv � bi. If the components of v and b are statistically independent,

then hei = 0. It is important to note that the converse is not true. For instance, hezi = 0

implies hvxbyi = hvybxi, but this does not imply statistical independence.

We study the case Hc = 0; � 6= 0 (dynamo type) in this section, and leave the case

Hc 6= 0; � = 0 (cross helicity type) for the next section. The calculations we are going

to perform are similar to the ones in the previous section. We will assume that the pairs

(x1; x2) and (x3; x4) are each well described by Gaussian joint PDFs f12 and f34 of the form

[9]:

fij �
1

2��i�j
q
1� �2ij

exp

8<
:� 1

2(1� �2ij)

2
4�xi
�i

�2
� 2�ij

xi

�i

xj

�j
+

 
xj

�j

!2
3
5
9=
; (29)

where

�ij �
hxixji
�i�j

(30)

Note that the mean value of z can be written in terms of �12 and �34:

hzi = (�12 � �34)�1�2 (31)

That is, the mean induced electric �eld is non-zero, unless �12 = �34. We now proceed as in

the previous section. We �rst compute the PDF for s = x1x2 from Eq. (A3). The calculation

is similar to the one leading to Eq. (21), now yielding:

f(s) =

q
1� �212

�a12
exp

�
�12

a12
s

�
K0

 
jsj
a12

!
; a12 � (1� �

2
12)�1�2: (32)
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The next step is to write the PDF for z = s1 � s2 using Eq. (A3) as in Eq. (23); to make

the integral tractable, we assume

�12 = ��34 � �: (33)

In this case, the exponentials in front of Eq. (32) cancel their \s" dependence when com-

puting the product f1f2 in Eq. (23), contributing just a factor exp( �12
a12
z), which drops out of

the integral. The problem is thus reduced to the evaluation of the convolution of a function

K0(
jsj

a12
) with itself, which yields an exponential as we saw in the previous section. The �nal

result can be expressed as:

f(el) =
1

2�vi�vj
exp

"
�

jelj
�vi�vj (1 + sgn(z)�)

#
(34)

where sgn(z) is the function \sign of z" and � = heli=(2�vi�vj ). Interestingly, the PDF

for el is an exponential f � exp(�jelj=�+) when el > 0, and a di�erent exponential f �

exp(�jelj=��) when el < 0, with �+=�� = (1 + �)=(1 � �). When � = 0 = heli, Eq. (34)

reduces to the uncorrelated result Eq. (27).

We can compute the standard deviation of z = el from Eq. (34). However, it is better to

do it in terms of s1 and s2, which will give us a result for generic �1 and �2. Eq. (30) simply

states hs1i = �12�
2
1�

2
2 , and hs21i = (1 + 2�212)�

2
1�

2
2 by integration from Eq. (32). We now use

these results (and the analogous forms for hs2i and hs22i) to obtain:

�el = �z = �1�2

q
2 + �212 + �234 (35)

Note that Eq. (35) reduces to Eq. (14) when �12 = 0 = �34.

C. Cross helicity-type correlated Gaussians

We focus now on a model for the case in which the cross helicity is �nite (see the discussion

in the previous section) and the mean induced electric �eld is zero (or Hc 6= 0; � = 0). In

terms of the fxig variables, we will have to consider correlations for the pairs (x1; x4) and

(x2; x3). We apply Eq. (A3) in just one step:
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f(z) =

Z
f14(x1; x4)f23(x2; x3)Æ[z � (x1x2 � x3x4)]dx1dx2dx3dx4 (36)

where both f14 and f23 are given by Eq. (29). It is trivial to verify that in this case there is

no mean electric �eld (for instance, hzi = hx1x2i � hx3x4i = hx1ihx2i � hx3ihx4i = 0). The

standard deviation for the components of the electric �eld can be computed very easily as

well:

�z = �1�2

q
2(1� �14�23) (37)

After integration in Eq. (36) we obtain (See Appendix A for details):

f(z) =
1

p
2�z

gexp

 
�14; �23;�

p
2

�z
jzj
!

(38)

where �z is given by Eq. (37) and we de�ned

gexp(�1; �2; z) �
p
1� �1�2

2�

Z 2�

0
exp

 
�1

�2

s
1� �1�2

1� �21

z

!
d�

�1�2

(39)

�i �
q
1� �isin(2�) (40)

Note that when �1 = �2, the exponential exp(z) drops out of the integral in Eq. (39), giving

the result:

gexp(�; �; z) � e
z (41)

It is evident from Eqs. (29) and (36) that

gexp(�1; �2; z) = gexp(�2; �1; z) (42)

Figure 1 shows gexp(�1; �2;�jzj), evaluated numerically for the cases �1 = �2 = 0:9 and

�1 = ��2 = 0:9. The �rst case corresponds to an exponential, as indicated by Eq. (41),

and hence has a Kurtosis of 6. The other case shows a atter function, yielding a kurtosis

of 8:89. In fact, when �1 ! 1 and �2 ! �1, then z ! 2x1x2, which implies, according to

Eq. (21), that f(z)! (��z)
�1
K0(jzj=�z). That is,

lim
�!1

gexp(�;��;�jzj) =
p
2

�
K0(jzj) (43)

In particular, in this limit the Kurtosis is 9 (see Eq. (13)).
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D. Variance anisotropic turbulence

So far we have assumed variance isotropy (i.e. Eq. (10)), since calculations are far more

involved in the anisotropic case. Nonetheless, there is a limit that is analytically tractable.

This is the limit in which

� �
�3�4

�1�2
! 0: (44)

Note that this limit would occur, for instance, if one of the uctuating �elds was plane

polarized, but the other was variance isotropic; in this case, the components of e in the

polarization plane would both satisfy Eq. (44). Let us write Eq. (A3) in the form:

f(z) =

Z
F

�
x1

�1
;
x2

�2
;
x3

�3
;
x4

�4

�
Æ[z � (x1x2 � x3x4)]dx1dx2dx3dx4 (45)

where F (x1; x2; x3; x4) is the joint PDF for x1; x2; x3; x4. Making the change of variables

~xi � xi=�i, ~z � z=(�1�2), we can rewrite Eq. (45) as

f(ẑ) = �3�4

Z
F

 
~z � �~x3~x4

~x2
; ~x2; ~x3; ~x4

!
d~x2

j~x2j
d~x3d~x4; (46)

and taking the limit �! 0,

f(ẑ)! �3�4

Z
F

�
~z

~x2
; ~x2; ~x3; ~x4

�
d~x2

j~x2j
d~x3d~x4 (47)

Note that the dependence in (~x3; ~x4) can be integrated in a �rst step, and �nally the prob-

lem reduces to an integral in ~x2. It is straightforward to show that both for uncorrelated

Gaussians and cross helicity-type correlated Gaussians we obtain (see Eq. (21)):

f(el)!
1

��vi�vj

K0

 
jelj
�vi�vj

!
: (48)

and for dynamo-type correlated Gaussians we obtain (see Eq. (32)):

f(el)!
p
1� �2

�a
exp

�
�

a
z

�
K0

 
jzj
a

!
; a � (1� �

2)�vi�vj : (49)

and � = heli=�vi�vj Note that all the solutions in this limit are related to K0 functions.

We recall that K0 diverges logarithmically at the origin, and decays faster than a simple

exponential:
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K0(jzj) � �ln
 
jzj
2

!
+ C; jzj � 1; (50)

K0(z) �
r
�

2

e
�jzjq
jzj
; jzj � 1; (51)

C � �0:577215 is Euler's constant.

Fig. 2 shows the distribution function f(z) for small but �nite � = 0:1. The Gaussian

random variables fxig for the plot are obtained with a Gaussian random number generator.

Except for the discrepancy at the origin, the PDF for z is fairly close to the asymptotic

solution Eq. (48). The plot shows that � does not need to get too small for the PDF to be

close to Eq. (48).

We note that even though variance isotropy implies �vi�bj = �vj�bi (which we need to

derive the results in the previous sections), such a relationship does not require variance

isotropy. For instance, consider the situation of compressible MHD turbulence in presence

of a DC �eld in the z direction. In this case, �vx � �vy � �vz , and �bx � �by � �bz [8]. We

immediately see that the variance isotropic results are valid for ez due to variance isotropy

in the perpendicular planes (variance axisymmetry). For the perpendicular components

of e, on the other hand, the variance isotropic results are valid if �vx=�vz = �bx=�bz and

�vy=�vz = �by=�bz , which might be approximately satis�ed in some situations.

III. NUMERICAL RESULTS

We solve the standard MHD incompressible dissipative equations using a pseudo-spectral

Fourier technique as described in [10]. We label our runs as follows: (i) ISO run. This is an

isotropic run, with no DC �eld. We let v(x,t) and b(x; t) relax in time, from an isotropic

initial condition with no net mean magnetic �eld. (ii) DC run. We let a DC magnetic

�eld B0 = B0ẑ act on the plasma, and study the relaxation of the MHD �elds v(x; t) and

B(x; t) = B0 + b(x; t). Both runs start with isotropic, power-law, random-phase Gaussian

(v,b) �elds, with unit energy, zero cross helicity and zero magnetic helicity. More explicitly,

the initial �elds are such that
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E
v(k) = E

b(k) =
C

1 + (k=kknee)5=3
; (52)

where kknee = 4k0, k0 being the smallest wavenumber of the system. E
v(k) and E

b(k)

are respectively the kinetic and the magnetic omnidirectional power spectra. We de�ne

L0 = 2�=kknee, our \energy containing scale", as the unit length, u0 as the unit velocity and

magnetic �eld (recall that the magnetic �eld is written in velocity units) and t0 = L0=u0 as

the unit time. The normalization constant C in Eq. (52) is chosen so that hb2i = hv2i =

2
P

k E
v;b(k) = 1 (at t=0). For the DC run, Bdc = 1 as well. The magnetic Prandtl number

is set to 1, the macroscopic Reynolds number is R = u0L0=� = 200 and the resolution

is 1283 in all the runs. In all cases the solutions approximately satisfy variance isotropy:

hv2xi � hv2yi � hv2zi; hb2xi � hb2yi � hb2zi; where the brackets h i mean here spatial average

over the whole computational volume. The uctuating �elds v and b average to zero at all

times: hvi = 0 = hbi.

Figure 3 shows the PDF for ez for the ISO run, at t = 3. The PDF is remarkably close

to the exponential function Eq. (27), as it turns out from the �gure. The DC run yields a

similar result, as shown in Fig. 4. The PDFs for the components of v and b (not shown)

always lies close to a Gaussian, which is consistent with the quasi-normal assumption of this

work, and in general with the quasi-normal character of turbulence.

A way to quantify the departure of the observed PDFs from the predicted values is

to measure their Kurtosis'. For instance, the Kurtosis for any component of v and b is

usually slightly above the Gaussian value of 3 (typical values are between 3 and 3:1 in our

simulations). The Kurtosis for the components of e have an interesting behavior, shown in

Figs. 4 and 5. It seems evident that the Kurtosis tends to be smaller than 6 in the ISO case,

and greater than 6 in the DC case. Nonetheless, the departure from the predicted value of

6 is always relatively small.
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IV. SUMMARY AND CONCLUSIONS

In the present paper we study the statistical properties of the induced turbulent electric

�eld for a magnetohydrodynamic (MHD) plasma under the quasi-normal approximation.

In Section II we assume exact Gaussianity for both the turbulent velocity �eld v and the

turbulent magnetic �eld b, and �nd analytical expressions for the PDF for the components

of the uctuating induced electrical �eld e = �v�b in some cases of interest. The simplest

and most appealing result is obtained when statistical independence is assumed for the

components of v and b. In this case, the PDF for el is simply an exponential, see Eq. (27).

As mentioned above, statistical independence implies zero cross helicity Hc, and zero mean

turbulent induced electric �eld hei (i.e., impossibility of a dynamo e�ect). In sections II B

and IIC we allow correlations between the components of v and b, to extend the model

respectively to the cases of �nite hei and �niteHc. In the former case, we obtain an analytical

result when hvibji = �hvjbii, i.e. Eq. (34): the PDF turns out to be an exponential of the

form exp(�jelj=�+) for el > 0, and an exponential of the form exp(�jelj=��) for el < 0.

The PDF for the latter case can be written in terms of a function gexp(�1; �2; z), which also

reduces to an exponential when PDF when hvibji = hvjbii, as indicated by Eqs. (38-41).

All of these results assume variance isotropy for the turbulent uctuations. In Section

IID we show that the e�ects of variance anisotropy are measured by a single parameter

� = �vj�bi=�vj�bi We �nd that for extreme variance anisotropy (� ! 0), the three cases

considered before (i.e. uncorrelated Gaussians, dynamo-type correlated Gaussians and cross

helicity-type Gaussians) give solutions related to modi�ed Bessel functions K0 (see Eqs. (48)

and (49)).

In Section III we report results from three dimensional numerical simulations of the MHD

equations at moderate Reynolds numbers, where we investigate turbulent relaxation from a

broad-band initial condition, with no cross helicity. The PDFs for the components of e are

remarkably close to the exponential function predicted in Eq. (27), as shown in Figs. 3 and 4.

The dynamical departure from the exponential PDF seems to depend on the presence of
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a background, DC magnetic �eld. Figs. 5 and 6 seem to indicate that in the absence of a

DC �eld the Kurtosis is slightly smaller than 6, while in the presence of a DC �eld it is

slightly greater than 6. More numerical exploration may be needed to con�rm this trend.

But in general, the comparison between the numerical and the analytical results allows us

to be con�dent that the analytical results give a very good �rst order approximation to the

problem, at least at moderate Reynolds numbers.
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APPENDIX A: SOME USEFUL RELATIONS

Let z be a random variable which depends on another random variable x, then

f(z) =

Z
p(zjx)f(x)dx (A1)

where f is a PDF for its variable and p(zjx) is the conditional probability distribution for

z given x. Consider now the special case in which z is deterministically related to x by a

known function z =  (x). In this case, p(zjx) = Æ(z �  (x)):

f(z) =

Z
f(x)Æ(z �  (x))dx (A2)

The extension of this result to multiple dimensions is straightforward. If fxig is a set of n

random variables fx1:::xng, then

f(z) =

Z
f(x1; :::; xn)Æ(z �  (x1; :::; xn))dx1:::dxn (A3)

where f(x1; :::; xn) is the joint PDF of the fxig variables.

14



We now show how to obtain the PDF for the cross helicity-type case, Eq. (38), from

Eq. (36). Our �rst step is to make a change to non-dimensional variables, as in Eq. (46).

We note that here � = 1 (i.e., we are assuming variance isotropy). We replace Æ(z� (x1x2�

x3x4)) = Æ(�1�2(~z � (~x1~x2 � ~x3~x4))) = (1=j~x1j�1�2)Æ(~x2 � ~z=~x1 � ~x3~x4=~x1) in Eq. (36) and

compute the trivial integral in ~x2. We then compute the integral on ~x3, which is of the form

R
exp(�A~x3 � B~x23)d~x3 =

q
�=B exp(A2

=4B), where both A and B > 0 are constant with

respect to ~x3. Rearranging terms and making a change to polar variables (~x1; ~x4) ! (r; �),

we can write the remaining 2D integral as

f(~z) =
1

(2�)3=2�1�2

q
1� �

2
14

Z
exp

"
�

�2
14

2(1� �214)
r
2 �

~z2

2�2
23

r
�2

#
drd�

�23

(A4)

where we de�ned �ij �
q
1� �ijsin(2�). Making a last change in variables r! r̂ according

to
�2

14

2(1��2
14
)
r
2 = j~zjr̂2, the integral in r̂ takes the form

R
exp[�j~zj(r̂2�A2

=4r̂2)dr̂ / exp(Aj~zj)],

where A depends on �. The exact result is shown in Eq. (38).
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FIGURES

FIG. 1. The function gexp(�1; �2;�jzj) for di�erent parameters: (�1; �2) = (0:9; 0:9) in solid

line, and (0:9;�:9) in dashed. The Kurtosis for these two cases is respectively 6, and 8.8

FIG. 2. In solid line, the PDF for a random variable z � x1x2 � x3x4. The fxig variables are

generated with a Gaussian random number generator, and satisfy � �
�3�4
�1�2

= 0:1 (see Eq. (44)).

In dashed line: the exact result for the PDF of z in the limit �! 0 (see Eq. (48)).

FIG. 3. In solid line, the PDF for one component of the electric �eld, as computed from the

isotropic simulation, at t=3. In dashed line: the exponential PDF predicted by Eq. (27)

FIG. 4. In solid line, the PDF for one component of the electric �eld, as computed from the

DC simulation, at t=3. In dashed line: the exponential PDF predicted by Eq. (27)

FIG. 5. A time series for the kurtosis of the components of the electric �eld. from the isotropic

simulation. For each value of time, the values K(ex), K(ey) and K(ez) are used to compute a

mean value (displayed as a cross) and the statistical error (displayed as a vertical bar).

FIG. 6. A time series for the kurtosis of the components of the electric �eld. from the DC

simulation. For each value of time, the values K(ex), K(ey) and K(ez) are used to compute a

mean value (displayed as a cross) and the statistical error (displayed as a vertical bar).

17



FIG 1.

18



FIG 2.
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