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Abstract. In an evolving turbulent medium, a natural timescale can be
defined in terms of the energy decay time. The time evolution may be
complicated by other effects such as energy supply due to driving, and spatial
inhomogeneity. In the solar wind the turbulence appears not to be simply
engaging in free decay, but rather the energy level observed at a particular
position in the heliosphere is affected by expansion, “mixing,” and driving by
stream shear. Here we discuss a new approach for estimating the “age” of
solar wind turbulence as a function of heliocentric distance, using the local
turbulent decay rate as the natural clock, but taking into account expansion
and driving effects. The simplified formalism presented here is appropriate to
low cross helicity (non-Alfvénic) turbulence in the outer heliosphere especially
at low helio-latitudes. We employ Voyager data to illustrate our method,
which improves upon the familiar estimates in terms of local eddy turnover

times.

1. Introduction

During the roughly 30 years of observation of low-
frequency fluctuations in the solar wind, it has be-
come increasingly apparent that turbulence at mag-
netohydrodynamic (MHD) scales is an important fea-
ture of the heliosphere. MHD turbulence may provide
the mechanisms for energy loss from large scale struc-
tures, cascade processes at intermediate scales, and
excitation of kinetic processes at small scales. Con-
sequently, turbulence may play an essential role in
heating [ Coleman, 1968] of the solar wind plasma, and
possibly acceleration of both the slow [Hollweg, 1986]
and fast [McKenzie et al., 1995] wind. Similarly, tur-
bulence properties have strong influence upon spatial
transport of heat and wave energy [Tu and Marsch,
1993; Maithaeus et al., 1994a]. A particularly impor-
tant influence of turbulence is through scattering of
energetic particles, including pickup ions and cosmic
rays [e.g., Bieber et al., 1994; Zank et al., 1998], and
this is closely associated with spatial transport and

diffusion effects that can ultimately influence the en-
tire structure of the heliosphere.

In each scenario in which MHD turbulence may be
thought to be important, crucial questions arise con-
cerning the relative strength of turbulence: How in-
fluential is turbulence relative to other effects? Is it so
strong that it constrains other processes? An exam-
ple would be the assumption that “scattering centers”
are effective enough to enforce local isotropy of parti-
cle distributions. Or, is it weak enough that it is only
a small correction to other effects? The latter would
be consistent with adopting a wave dispersion rela-
tlon or magnetostatic quasi-linear scattering theory.
Sometimes this issue can become rather subtle, for ex-
ample, when one questions the reasons for apparent
accuracy of WKB theory in describing radial profiles
of solar wind fluctuation levels from 1 to about 10 AU
[e.g., Verma and Roberis, 1993; Zank et al., 1996]. Of-
ten a simple way to address these questions is through
comparison of characteristic timescales of turbulence
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and other relevant processes. The strength of turbu-
lence can be meaningfully quantified by identification
of a rate of turbulent evolution. This provides a nat-
ural definition for “aging” of the turbulence, in that
arbitrary time intervals can be referred to units of the
intrinsic dynamical timescale.

The purpose of the present paper is to explore the
issue of dynamical aging of MHD turbulence in the
solar wind between 1 AU and about 40 AU using a
simple formalism that can be compared with Voyager
observations. The goal is to place earlier qualitative
estimates on firmer footing [e.g., Matthaeus and Gold-
stein, 1986] and to point the way toward more com-
plete understanding of the role played by turbulence
throughout the heliosphere.

We employ three related methods in estimating
the age. There are important differences: The first
method is the only one that does not utilize a theo-
retical model for energy decay. The second is entirely
theoretical, having no input from observations except
for boundary conditions. The third method uses no
models for inhomogeneous effects, in contrast to the
first two approaches. Comparison of these three ap-
proaches shows agreement to within factors of two
from 1 AU to about 40 AU. Several ways in which
the present methods might be improved are briefly
described in the Discussion section.

2. Age in Decaying Turbulence

A convenient choice for the natural “clock” is the
timescale associated with energy decay in homoge-
neous MHD turbulence. In the absence of any driv-
ing mechanism, the equation for decay of nonthermal
fluid scale energy per unit mass E can always be writ-
ten as

dE E
= _ _Z 1
7 ; (1)

T

which serves to define the timescale 7(¢). The dimen-
sionless age of the turbulence # is now defined by

t
N dt
t = / —. (2)
o ()
Under the assumption of free decay, using (1) the age
can be written as

f:—/ot%i—fdt’zlog[%]. (3)

Thus, to make a fair comparison between different
samples of decaying homogeneous turbulence, one
looks at the systems when there remains the same

fraction of initial energy. Such turbulence is of equal
“age.” This convention is familiar in numerical sim-
ulations when comparing undriven dissipative runs
having different parameters such as Reynolds num-
bers [e.g., Matthaeus et al., 1996a].

One can go further if the decay law is related back
to turbulence parameters. A well-known example
adapted from hydrodynamics is the Taylor-Karman
decay phenomenology in which the decay timescale
becomes the “eddy turnover time,”

At
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u(t)
where ) is the energy-containing scale (often taken to
be a correlation or outer scale [see Batchelor, 1970])

and u ~ (2E(t))l/2 is the characteristic speed of
the turbulence, and E is the turbulent flow energy
per unit mass. For simple decaying homogeneous
turbulence this provides a complete phenomenology:
A~ ou; U~ —u3/X. This type of model provides
a closed form energy decay model [von Karman and
Howarth, 1938] and has been found using simulations
to be reasonably accurate (within say a factor of 2)
for a wide range of both hydrodynamic and MHD
parameters [Hossain et al., 1995]. In MHD the mag-
netic energy per unit mass b%2/2 complements the flow
energy, where b is the rms magnetic fluctuation in
Alfvén speed units, i.e., b = éB/ (47rp)1/2 for mass
density p and 6B the variance of the magnetic fluc-
tuations. The MHD Taylor-Karman phenomenology
has been proposed as an approximate description of
energy decay in locally homogeneous solar wind tur-
bulence in the context of scale separated transport
theory [Matthaeus et al., 1994a).

The usefulness of the simplest MHD phenomenol-
ogy is restricted to low or zero cross-helicity (correla-
tion between magnetic and velocity fluctuations) tur-
bulence, and for this case the single relevant Elsasser
amplitude is Z2 = u? + b? [Marsch and Tu, 1989].
The corresponding zero cross helicity MHD timescale
is 7 = A/Z [Kraichnan, 1965; Dobrowolny et al., 1980;
Hossain et al., 1995]. In the solar wind this condition
is generally applicable to the outer heliosphere, es-
pecially at low latitudes where observations indicate
that high cross-helicity Alfvénic fluctuations [Belcher
and Davis, 1971] are relatively absent [Roberts et al.,
1987a,b]. The applicability of a low cross helicity phe-
nomenology to high latitude solar wind is more in
doubt, since Ulysses observations indicate that high
cross helicity regions extend further outward in the
polar wind [Goldstein et al., 1995].

A straightforward estimate of the rate of aging of
solar wind turbulence is obtained by calculating the



eddy turnover time from well known near earth 1 AU
solar wind parameters [e.g., Maithaeus and Goldstein,
1982]. This amounts to adopting the Taylor-Karman
picture, i.e., a strong turbulence model, while ignor-
ing, for example, cross helicity effects on decay [e.g.,
Dobrowolny et al., 1980; Grappin, 1982, 1983; Pou-
quet et al., 1986, 1988]. Using A ~ 1/50 AU = 3 x 101!
cm, and v = 10 km/s, gives 7(1 AU) = 50 to 100
hours. Noting that the transit time of the equatorial
wind to 1 AU at 400 km/s is & 100 hours, we would
estimate that low helio-latitude solar wind turbulence
ages at a rate of about 1-2 eddy turnover times per
AU of radial convection. Such estimates, which are
expected to vary with radial distance, are familiar in
solar wind studies [e.g., Velli et al., 1989; Maithaeus
and Goldstein, 1986] but are of uncertain accuracy
since they ignore the effects of cross helicity (espe-
cially in the inner heliosphere) and inhomogeneity, as
well as shear, transport, and possibly pickup ion ef-
fects that may be important in the outer heliosphere

[Zank et al., 1996].

3. Age in Expanding, Driven Wind

Important generalizations to (1) are embodied by
transport theories of the form

0E 0E AU E
E‘FUE-FTE——?-FS, (5)

which describe radially symmetric transport of scale-
separated inhomogeneous turbulence in a wind of
constant speed U. Here r is the radial coordinate,
A is a constant, and S represents driving (source)
terms that inject energy into the turbulence field.
A variety of transport formalisms can be expressed
by (5), ranging from WKB transport of noninteract-
ing waves [Parker, 1966; Barnes, 1979; Hollweg, 1974]
to transport of strongly interacting MHD turbulence
[Zhou and Matthaeus, 1990; Marsch and Tu, 1989;
Maithaeus et al., 1994b]. A simplified theory of this
form was examined in detail by Zank et al. [1996]
and Matthaeus et al. [1996b] using assumptions ap-
propriate to solar wind fluctuations in the outer helio-
sphere. These assumptions include low cross helicity,
fixed turbulence symmetry, and low large-scale Alfvén
speed (compared to U). In general, the parameter A
in (5) includes effects such as “mixing,” expansion,
compression, and shear and has thus been refered to
as the “MECS” parameter by Zank et al. [1996]. In
the simplified formalism, A is treated as a constant.
Note that the value A = 1 corresponds to a WKB ex-
pansion if one also sets the decay and driving terms
to zero. The simplified forms of the theory, including
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dissipation and driving, admit analytical solutions of
interest in the present discussion.

For steady conditions we may write (5) as
dE E E E
U— =~ ——— +

~
dr T Texp Tshear

. (6)

The timescales 7 (the energy decay time), Texp =
r/(A X U) (the expansion time) and Tshear parameter-
ize the corresponding terms of the transport equation
(and in general depend upon position and time.) Here
we consider only the case where driving is due to in-
stability associated with solar wind streams [Roberts
et al., 1991, 1992; Zank et al., 1996]. Other driving
effects may include, for example, energy injection due
to excitation of turbulence by interstellar pickup ions
[Williams et al., 1995]. The shear time is estimated
by Zank et al. [1996] to be Tehear = 7/(CenU) and the
constant Cg, =~ 10 when estimated from 1 AU solar
wind parameters.

Using a change of variables to the convection time
at speed U relative to a reference position rg,

= [ 7. ()

o

we can formally integrate the steady transport equa-
tion to find that

56 “

The last two terms on the right-hand side represent
the cumulative effects of expansion and shear, respec-
tively, on the turbulence at convection time t(r) (ra-
dial position ). The energy at reference position rg
is Eo.

In spite of the complications that appear due to
spatial inhomogeneity and driving effects, one can
always compute the turbulence age directly if one
adopts a theoretical model for the energy decay time.
As mentioned above, for a Taylor-Karman MHD
model 7(r) = A(r)/Z(r) and the dimensionless age

is
R " dr Z(r)

t= — . 9

|75 ©)

Thus, if the spatial variation of the energy-containing

scale and the turbulent energy density is known by

any method whatsoever, the dynamical age of the tur-
bulence can be directly calculated.

Recall that in (9) Z(r) = vu2+5b2 = V2E is

the amplitude associated with the (incompressible)

turbulent energy density per unit mass E, and is
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equivalent to an Elsasser amplitude for the assump-
tion of zero cross helicity. For connection with ob-
servations [Zhou and Matthaeus, 1990] it is some-
times convenient to assume that the (Alfvén) ratio
ra = u?/b* = E,/Ep is constant; for equipartition
ra = 1 and Z = v2b = 2/E,, where E, = b%/2
is the energy per unit mass of the magnetic fluctua-
tions. This is reasonably in accord with observations
[Roberts et al., 1990] in which averages of 1 day esti-
mates of 74 decrease with radius from about 0.8 at 2
AU and remain constant near 0.5 beyond 5 AU or so.

Even without adopting a particular theoretical
connection between turbulence parameters and the
energy decay time, it is clear from (8) that the tur-
bulence age ¢ can be determined if the fraction of en-
ergy remaining is known along with the quantitative
effects of shear and expansion. For example, suppose
that there are no driving effects. Expansion effects
are taken into account by texp = Alog(r/7o). For this
simplified case the age of the turbulence as a function
of heliocentric distance is simply

log (%) — Texp
log [% (’;—O)A] (10)

For simple WKB expansion the constant 4 = 1, and
we see that a proper evaluation of age of turbulence in
a uniformly expanding medium differs from the homo-
geneous case by correcting the fraction of remaining
energy by the radial factor ro/r prior to computing
the logarithm. This “undoes” the effects of expansion,
since the age calculation is intended to be a measure
of decay due to turbulence not reduction of fluctua-
tions by expansion.

o~

Note that this example does not require that we
make use of a particular model for the eddy turnover
time. Corrections for shear can also be modeled by
computing the correction factor due to shear tehear =

f:u dr Csn /7 = Cspnlog (r/7o).

4. Methods of Evaluating the Age

The above considerations suggest three simple meth-
ods, each somewhat distinct, that can be used to
compute the dynamical age of turbulence in the solar
wind.

4.1. Method I

We may use theoretical models for tenear and fexp
to represent the effects of shear and expansion. A

simple calculation shows that for this case

207 @

where typically we would use A =~ 1 and Cy, ~ 10.
The required values of E(/E are then extracted from
spacecraft data, allowing computation of the age.

i =log

4.2. Method II

If we employ a theoretical model for 7 directly, and
solve the transport equations that map the required
parameters in the radial coordinate, we may then
compute the age directly from the integral (2). Ef-
fects of shear and expansion are included in the trans-
port model, so there is no need for observational data
except for the boundary data required by the theoret-
ical calculation. As an example we will use an MHD
Taylor-Karman phenomenology for 7 and make use of
the analytically solvable models described by Zank et
al. [1996] and Matthaeus et al. [1996b] including both
shear and expansion effects. Using 7 = A/+/Ep and
the corresponding solution for A(r) and E(r) given
by Zank et al. (in their equations 25, 28 and 29), we
find, from (9), and for the special case of 4 = 1, an
explicit expression for the turbulence age,

1—|—D{(:—0)05h+1/2 - 1}] (12)

D= M‘ (13)
(Csh + 1/2)UAO

This model requires specification of the turbulent
magnetic energy density Fyo and the correlation scale
Ao at the inner boundary at ro. A closely related
model with 7 = A/Z can also be solved exactly
under the assumption of constant Alfvén ratio [see
Maithaeus et al., 1996b], and gives a result that would
be identical to (12) except that the quantity Epo in
the constant D is replaced by Z, the Elsasser ampli-
tude at reference position rq.

t =log

4.3. Method III

The final method we consider is in a sense a hybrid
of the first two. We use the Taylor—-Karman form of
the eddy turnover time 7 = A/Z to compute the age
from (9) as in method II, but in this case we will
extract the turbulence parameters Z = 1/2E(r) and
A(r) from observations. Note that method I also re-
lied on observations for E(r) but did not require A(r)
since no phenomenology for 7 was assumed. Method



IIT requires no modeling of any kind for shear or ex-
pansion, in contrast to both method I and method
II.

5. Turbulence Age Results

In each test case described here, we calculate the
age of turbulence relative to its state at 1 AU. Where
necessary, we evaluate the radially dependent energy
density E(r) by using the fluctuating magnetic energy
per unit mass derived from spacecraft observations of
the interplanetary magnetic field. We use only the
N component of the magnetic field. The N direc-
tion is normal to the radial direction and the direc-
tion of solar rotation. At low latitudes N is normal
to the solar equatorial plane. Use of the N compo-
nent alone avoids complications due to stream struc-
ture and sector boundary effects [Ness and Wilcoz,
1965]. (Sector rectification is a possible alternative
approach, but might be unreliable in the outer helio-
sphere [Burlaga and Ness, 1993].) The magnetic field
fluctuations are computed from spacecraft vector av-
erages (with cadence for Voyager data of 1 hour) us-
ing 10 hour data intervals, and averaging the results
of such samples over approximately a solar rotation
period. Data from the Voyager 1 and 2 spacecraft are
used because they span the range of radial distances

from 1 AU to 40 AU.

To evaluate the age of turbulence using method I,
we employ (11) with Ce, = 10 and A = 1. This corre-
sponds to the case of no “MECS” or “mixing” effects
as discussed by Zank et al. [1996], as well as their
estimated value of the shear driving constant. We
can estimate E/E, from 6B%, the energy density (per
unit mass, in Alfvén speed units) in the normal com-
ponent of magnetic field, by employing two assump-
tions, that the Alfvén ratio is independent of helio-
centric distance, and that 53%, is a constant fraction
of the total magnetic variance 6B%. This is equivalent
to assuming the turbulence has fixed symmetry with
the mean field direction normal to N. (See Klein et al.
[1991] for a discussion of variance ratio anisotropies in
the outer heliosphere.) With these assumptions, (11)
becomes ,

{ = log [rjULN(zl AU)] : (14)
6B (1)

where 74y is the radial coordinate in units of AU
(1.5 x 103 cm). Note that the boundary value
6B%(1 AU) is computed from omnitape data [King
and Papitashvili, 1994], making the evaluation by
time-lagging back to 1 AU from the time of obser-
vation at a given r using a constant 450 km/s wind
speed. The goal is to (nominally) look at the same
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Figure 1. Dimensionless age of turbulence relative
to state at 1 AU, for method I. Shear and expansion
are accounted for using simple analytical models de-
scribed in the text. Results shown are for constants
Csn = 10 and A = 1. Turbulent energy density as a
function of heliocentric distance, normalized to 1 AU
is obtained from Voyager 1 (triangles) and Voyager 2
(squares) data using the component of magnetic field
fluctuation normal to the ecliptic. Data point values
are obtained using (11).

plasma parcel at 1 AU and at r, thus providing a
correction for solar cycle effects.

Figure 1 shows the results of this method I analy-
sis using Voyager 1 data from 1 AU to about 40 AU
and Voyager 2 data from 1 AU to about 30 AU. What
is apparent is an increase in age by about 40 charac-
teristic times (eddy turnover time) during convection
from 1 to 40 AU. While there is on average an aging
of about 1 turnover time per AU, it is evident that the
rate of turbulent evolution seems to be clearly slowing
with increasing heliocentric distance.

The formula (12) for method II evaluation of the
turbulence age relative to its state at 1 AU is made
concrete using the same shear and expansion con-
stants (Cen = 10, A = 1) as were used in method
I. However, the constant D defined by (13) repre-
sents boundary data and is determined using esti-
mates of 1 AU turbulence parameters (1/2Ep = 20
km/s, Ao ~ 3 x 10'* cm = 1/50 AU, U ~ 400 km/s,
ro = 1 AU). Thus we estimate D ~ 1/4. The corre-
sponding values of turbulence age for Voyager 1 ob-
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Figure 2. Turbulence age i calculated from Voy-
ager 1 data using methods I, II, and III. Method
I results (triangles) are a subset of those shown in
Figure 1. Turbulence age obtained from method II
is shown for the Zank et al. [1996] analytical decay
model based upon 7 = A/y/E; (long dashed lines)
as well as a similar model that employs 7 = A/Z
(short dashed lines). The same values of Cs, and
A are used for methods I and II. No observational
data enter method II except for boundary data at
1 AU. The method III calculation of dynamical age,
obtained from observed values of A (via the e-folding
technique) and energy (variance of normal magnetic
component), is depicted by the solid line.

servations from 1 AU to 40 AU are plotted as dashed
lines in Figure 2. The two related phenomenologies,
in terms of either 7 = A/y/Ey (D = 1/4),or 7= A/Z
(D = 1/2) are both shown in the figure, using longer
and shorter dashed lines, respectively. The cases dif-
fer only slightly from one another and can be com-
pared, in Figure 2, with the subset of method I results
that were obtained from Voyager 1 data over the same
interval. The models compare reasonably well over
the entire range of radial distance, differing by about
15% at 40 AU. In Figure 3 the same two method II
cases, represented by the same dashed lines, can be
compared with the method I results from Voyager 2.

Method III is unique in that it requires compu-
tation of the energy-containing scale, taken here to
be the correlation scale A associated with the normal

40
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Figure 3. Similar to Figure 2, but using Voyager 2
data to calculate turbulence age # via Methods I, II,
and III. Method I results (squares) are a subset of
those shown in Figure 1. The turbulence age ob-
tained from Method II is shown for the analytical de-
cay models (dashed lines) as described in the text.
The Method IIT calculation of dynamical age, ob-
tained using observed values of the correlation lengths
and energies, is depicted by a solid line.

component of the magnetic fluctuations. As with ex-
traction of any quantity that is sensitive to the long
wavelength, low frequency part of the observed sig-
nal, there are considerable uncertainties in evaluation
of the correlation scale from data intervals of finite
duration. Here we make use of estimates of A(r)
based upon the autocorrelation function of the ob-
served 6By, defined as Ryn(n) = (6BnéBYy), where
7 is the distance between the positions at which 6By
and 6By are measured. We employed several ap-
proaches, most of which involved evaluation of A as
the normalized integral under the correlation func-
tion, A = fooo Ryn(n)dn/Rnn(0). For finite data
samples, this integral must be cut off, leading to errors
that systematically depend upon unresolved or poorly
resolved low frequency structures. A second approach
is to approximate A as the distance over which the
correlation function falls to 1/e ~ 0.36787 of its peak
value at zero separation. This latter, so called “e-
folding” definition of the correlation length, produced
the most stable results, and the present results are en-
tirely of this type. In this analysis we also make use



of the approximation that the energy density can be
computed from the magnetic normal component vari-
ances, and we approximate that Z(r) = v/2b (equipar-
tition). In addition we assume that the fluctuations
are transverse to, and rotationally symmetric about
the mean magnetic field direction, which itself is as-
sumed to be orthogonal to the N direction. (This
is consistent at low latitudes with a fixed symme-
try relative to a Parker mean magnetic field. See
discussion prior to (14).) Thus b ~ +/2by, where
b3, = 6B%/+/(47p) is the variance of the N compo-
nent of the magnetic fluctuation in Alfvén speed units.
In this case the method IIT approximation to (9) be-
comes

N " dr' by(r')
t=2 — . 15
/ru U A" (15)
Method III results for the turbulence age are shown
in Figure 2, based upon Voyager 1 data, and in Fig-
ure 3, based upon Voyager 2 data, and in each case
are represented by the solid curve.

6. Discussion

We have presented a determination of the “age” of
turbulence, i.e., the passage of characteristic nonlin-
ear or eddy turnover times, for solar wind turbulence
from 1 to 40 AU near the ecliptic that have been
explored by the Voyager magnetic field and plasma
instruments. Three methods have been employed,
and they agree moderately well out to 40 AU, i.e.,
within a factor of 2, although there is a suggestion
that the discrepancies grow worse as the methods are
extended for tens of AU. An optimistic interpretation
of the results is that they confirm, at least roughly,
the basic theoretical underpinnings of the methods.
A more demanding and realistic interpretation is that
the present results suggest avenues for future improve-
ment of both the theory and method of analysis of the
observations.

The data presented in Figures 2 and 3 summarize
the results. Two models, methods I and II, make
use of a simple model for shear driving, characterized
by a “shear constant” Cg, = 10. Of these two, the
method I result (triangles and squares) relies on ob-
served values of turbulence energy, while the method
IT results (dashed lines) employ analytical models for
radial variation of the turbulence level, making use of
observed quantities only at the inner 1 AU boundary.
The remaining trace in the figures (solid lines) are
method III determinations, based upon the Taylor—
Karman phenomenology and observed values of en-
ergy and correlation scale. It is important as well
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to recall what each model lacks. Method I assumes
nothing about turbulence phenomenology. Method
IT ignores observations except at the inner boundary.
Method III completely ignores inhomogeneous effects,
such as shear and expansion.

The overall picture provides a fairly consistent view
of the rate of aging of MHD turbulence in the solar
wind from 1 to 40 AU. Given the intrinsic differences
in the methods, and the lack of fine tuning in the
examples presented, it is noteworthy that the aging
estimates are as closely spaced as they are. On this
basis, we cautiously claim that the results confirm
some of the basic physics of the age determinations
as we have defined them. There are a number of re-
finements that might render the various estimates in
closer agreement. For example, an improved turbu-
lence phenomenology (i.e., better theory for 7) would
change the results for methods II and III, but leave
method I results unaffected.

A very simple modification of method III would
be a better observational definition of the energy-
containing scale, or perhaps a better method for eval-
uating the correlation scale. Method I depends sen-
sitively upon the assumed values of shear and expan-
sion constants, and especially upon the form of the
shear driving term in the transport equations. Sensi-
tivity to both the phenomenology and the shear and
expansion terms have influence upon method II re-
sults, which nonetheless agree rather well with those
of method I. The reader should note that this corre-
spondence would be expected on the basis of the com-
parison of transport theory and observation given by
Zank et al. [1996] (see, for example, their Figure 4).

At any given distance between 1 and 40 AU, the
estimates plotted in Figures 2 and 3 lie within about
+20% of their mean. In this interpretation the tur-
bulence experiences about 40 eddy turnover times (or
decay times) during the 170 days or so required for
convection from 1 to 40 AU. On average this corre-
sponds to about 4 days per eddy turnover, which is at
the slower end of the range of expectations based upon
1 AU estimates. However, the models also indicate a
gradual and monotonic slowing of the turbulence as it
ages and evolves in radial distance, and Figures 2 and
3 support an estimate of about two turnover times
per AU between 1 AU and about 10 AU. In the range
20-40 AU this slows to about 1/2 an eddy turnover
time per AU.

Based upon the present simple models, a consistent
picture is that solar wind turbulence experiences from
30 to 50 eddy turnover times between 1 and 40 AU,
with the evolution from 1 to 10 AU being somewhat
faster than the evolution between 10 and 40 AU. It
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has been our main purpose to examine the feasibility
of such relatively simple descriptions of turbulence
aging and evolution, and to this end we have simpli-
fied observational analysis, grouping together various
types of solar wind fluctuation data, and have em-
ployed only very simple analytical models of shear,
expansion, and decay.

Given the suggestive but not entirely satisfactory
level of agreement seen in the three methods, it is
tempting to envision improvements that might attain
greater accuracy in general, and in particular better
agreement. Indeed, a useful strategy would appear to
be to use the differences in physical assumptions in
the three methods to suggest and constrain improved
models of several types. Perhaps most clearly indi-
cated is a better theory for shear generation of tur-
bulence, improving upon the simple approach based
upon a single radially independent shear constant
Cen. The goal of such an improvement might be to
make method I and II results move closer to the un-
changed method III results.

We also must recall that the phenomenology that
enters into methods IT and III is specifically restricted
[Hossain et al., 1995; Zank et al., 1996] to low cross
helicity and thus would not be applicable directly to
high latitude solar wind regions in which cross helic-
ity remains high at least to 4 AU [Goldsiein et al.,
1995]. In these Alfvénic regions, an age determina-
tion method would need to include an appropriate
high cross helicity phenomenology [e.g., Dobrowolny
et al., 1980; Grappin et al., 1982, 1983].

Most likely, several types of refinements will be
needed to decrease discrepancies between the meth-
ods that grow at higher heliocentric distances. In fact
all refinements might help in this regard, since the er-
rors will accumulate as the methods march out from
the inner boundary. However a future refinement that
promises to specifically affect outer heliospheric re-
sults is modeling of the role of interstellar pickup ions
in driving outer heliospheric turbulence [Lee and Ip,
1987; Williams et al., 1995; Zank et al., 1996]. In
this regard we note that the results of the method
IT analysis (solid curves in Figures 2 and 3) may be
quite sensitive to the presence of pickup ion-driven
turbulence which might act to supply energy, increas-
ing Z while decreasing A, and thus pushing up the
estimate of {. This is a possible explanation of the
more rapid increase of the method III results relative
to both methods I and II.

In the future it will also be interesting to compare
the rate of turbulent aging examined here to alter-
native measures based upon evolution of the low fre-
quency spectral breakpoint [Klein et al., 1992; Hor-

bury et al., 1996], and especially the possible varia-
tion of the rate of evolution with helio-latitude, e.g.,
a theoretically motivated comparison of Voyager and
Ulysses results.
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