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Abstract.

Characteristic length scales can be employed to describe the large scale structural and sta-

tistical features of solar wind plasma turbulence. At least two outer scales of interplanetary turbulence, the

correlation scale and an independent quantity that has been called the “Ultra scale,” have application in

the theory of field line random walk and charged particle diffusion. This paper discusses interpretation of

the outer scales, and presents some preliminary observational results concerning their radial evolution.

Introduction

Solar wind plasma and magnetic field fluctuations
are broadband, and typically admit a powerlaw iner-
tial range observed in the spacecraft frame at scales
corresponding to several seconds up to several hours.
If the signal were powerlaw at all frequencies, there
would be no inherent scales. However, if a powerlaw
has finite extent, there must be scales that character-
ize this change of behavior. A model for a powerlaw
spectrum that flattens at low frequency must have
one scale that corresponds to the rollover from flat to
powerlaw. A familiar example of this is the exponen-
tial correlation function. For solar wind fluctuations,
it is apparent that at least two scales are needed to
describe the fluctuations, corresponding to the termi-
nation of the powerlaw range at both the long wave-
length (low frequency) end and at the short wave-
length (high frequency) end. Two important ques-
tions that have been addressed only partially prior to
this time are: How many length scales are required
to characterize the fluctuations? What are the phys-
ical meanings of these scales? Here we present some
preliminary studies of characteristic long wavelength
(“outer”) scales in the solar wind, motivated in part
by considerations of charged particle scattering the-
ory.

Correlation Functions and Correlation
Length

The two point correlation function provides a
basis for discussion of various characteristic length
scales. The correlation function can be defined for

the = component of the fluctuating magnetic field
b(x) = (bg, by, b.) as
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where it is assumed for convenience that the observa-
tion direction is z so that only spatial lags r in the 2
direction are measured. In the solar wind this would
be the radial direction, in accordance with the as-
sumption of frozen-in flow. The most familiar outer
scale is the correlation scale, which can defined in
accordance with standard practice (2) as
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where we now suppress the irrelevant coordinates.
An alternative definition of the correlation scale that
is sometime useful when large lag data is unavailable
(or unreliable) is the “e-folding” correlation scale
which is defined by the condition R,,(\&, f7¢) =
R;:(0)/e where e = 2.71828....

The integral definition is associated with a famil-
iar interpretation in terms of the power spectrum
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so that the correlation scale is proportional to the
“power at zero frequency,” or, more precisely, the
power at zero wavenumber in the reduced wavenum-
ber spectrum (7).

The correlation length defined in either of these
ways is physically relevant in that it is an estimate
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of the scale at which the powerlaw gives way to a flat
spectrum at low wavenumber. Therefore it provides
an estimate for the size of the dynamically important
eddies, or “energy containing” eddies in the turbu-
lence. The correlation scale also emerges naturally in
the quasilinear theory of field line random walk (8),
in that the quasilinear diffusion coefficient (Fokker
Planck coefficient) is
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where By is the mean magnetic field and A\, is the
correlation length of B, measured in the z direction
which is along the mean field. Therefore A, it is
of importance in particle scattering theory, in which
particles can follow field lines as they diffuse.

However important it might be, the correlation
scale is an intrinsically very difficult quantity to ex-
tract from finite data samples. According to its def-
inition Eq. (2), A is the ratio of the area under
the curve of the correlation function to the variance
of the magnetic field component of interest, since
R,.(0) = (b2). Both of these are explicitly sensitive
to unresolved power at low wavenumber. Therefore
there is an extreme sensitivity of the correlation scale
to contributions from very long period fluctuations
in the spacecraft frame. The lowest frequency fluc-
tuations are also crucial in determining (10) whether
fluctuations are stationary in time, or homogeneous
in space. Discussion of this point invariably focuses
on the issue of how one defines the ensemble of in-
terest. It could be appropriate (depending upon the
physical problem of interest) that the ensemble be as-
sociated with volume averages, or, alternatively, time
averages. It might be the ensemble seen by drifting
particle distributions. One might also recognize that
there a separate ensemble above and below the helio-
spheric current sheet. These choices raise questions
that as yet have not been answered completely, and
that most likely have answers that vary from appli-
cation to application. Even though both the obser-
vational and theoretical ambiguities invariably enter
into interpretation of the correlation scale, it remains
a quantity of considerable, if not central importance,
in many problems in space physics.

Is the correlation scale the only important outer
scale? If the correlation function were a simple expo-
nential, the answer would be yes, but there is clearly
too much complexity at the low frequency end of the
observed spectrum to have a simple one parameter
dependence (see, e.g., (11)). Thus, the answer seems
to be almost definitely not. There are other char-
acteristic large scales in solar wind turbulence, but

as yet we do not have a handle on them observa-
tionally, and we are only starting to understand the
physical nature of such scales in mathematical mod-
els. Most likely outer scales are of relevance to both
coronal and solar wind dynamics. For example, it is
almost certain (11, 16) that very low frequency, long
wavelength solar wind observations at 1 AU represent
remnant features of solar source surface structures or
coronal dynamics below the Alfvén point.

Ultrascale and Zero Crossing Scale

In a nonperturbative approach to the field line
random walk (12, 4) problem, the excursion of the
field lines in the direction transverse to the mean
magnetic field By is not neglected as it is in quasi-
linear theory. When the fluctuations b vary in the
transverse directions, the correlation properties of
the magnetic field in the direction across the mean
field must enter into the problem. This suggests
that field line random walk can involve characteris-
tic scales that are distinct from the usual correlation
scale. This expectation is born out by explicit calcu-
lation (12) of the field line Fokker Planck coefficient
for a model having two components — a slab ingre-
dient (varying along Bp) and a two dimensional in-
gredient (varying in transverse directions only). For
this case the field line diffusion coefficient becomes

Dqr, + D?QL +4D3D
D= V . (6)
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As in Eq. (5), Doy is the quasilinear result, while
D5 p is a diffusion coefficient associated with the two
dimensional fluctuations,
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where b3, is the variance of the 2D fluctuations,
and the Fourier series corresponds to carrying out
the calculation in a large periodic box of dimension
L in the transverse directions.

The length scale X is defined in terms of an in-
verse k3 weighting of the fluctuation spectrum and
thus can readily be distinguished from the ordinary
correlation scale . (see, e.g., (2)). A depends on
the very low wavenumber fluctuations in the trans-
verse direction. For this reason, \ has been called the
ultrascale (12). It is not difficult to conjure model

(7)
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spectra for which the ultrascale diverges. This can
be understood in physical terms. Note that the 2D
fluctuations can be expressed as bap = VX 2A4,(z,y)
where A, is the z-component of the vector potential
associated with the 2D fluctuations. Sometimes this
is called the poloidal flux function because differences
in A, along a line are equal to the magnetic flux (per
unit length) intersecting the line. The mean square
vector potential (3) computed over the 2D volume

I?is
2
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By inspection we see that A ~ ((A2)/(b3,))"/?, i.e.,
A\~ AA./6Bsap, where AA, is the r.m.s. magnetic
flux in the “magnetic islands” that are characteristic
of 2D turbulence (3). Herein lies the key to under-
standing the ultrascale, as well as physical reasons it
might sometimes be divergent. The ultrascale is the
length obtained from the ratio of mean square flux to
mean fluctuation energy. It is therefore a measure of
the mean size of poloidal (2D) flux structures. One
should note that the mean size of the poloidal flux
structures may be of the order of L, the box size.
What happens to the model when L — oco? The is-
sue of finite X is related to the question of whether all
poloidal structures are contained (closed or averaged
to zero) within a given box of size L. If so, then for
still larger L, the value of A will remain finite. Infi-
nite mean square vector potential (A?) is associated
with the infinite box limit whenever there are islands
of infinite size that have finite flux.

Another issue is whether there are signatures in
the correlation functions that are connected with
A Imagine computing a correlation function in the
transverse direction using a mean lagged product ap-
proach. A probe is placed within a magnetic island,
and its signal is multiplied by that of a second probe
as the position of the second probe is varied. The
averaged signal cannot approach zero until the sep-
aration distance is of the order of the island size —
otherwise the spatially varying magnetic field will not
yet have changed sign relative to the signal at the
original position. When the probes are separated
beyond the mean island size, contributions to the
correlation may reverse sign. On the basis of this
heuristic reasoning, we may conjecture that the ul-
trascale 5\, which is a measure of mean poloidal island
size, is also connected with the zero crossing scale of
the correlation function. To be precise, let Ay be the
minimum length for which R, (A¢) = 0. Our con-
jecture is that X ~ Xg. If true this would provide a
conceptual and observational basis to discussions of
the ultrascale.

Other Outer Scales

In principle there can be many length scales asso-
ciated with the long wavelength shape of the correla-
tion function. These would be equivalent, for strictly
homogeneous turbulence (14), to the scales associ-
ated with the behavior of the spectrum as k — 0, e.g.,
the coefficients in a power series expansion about
k = 0. Real turbulence that is not so well behaved
mathematically at extremely large scales, will also
have other characteristic lengths besides the correla-
tion scale and the ultrascale. In the solar wind, these
additional outer scales include at least two.

First, there is a scale associated with the break-
down of the assumption of local homogeneity. Fluc-
tuations larger than some scale cannot with reliabil-
ity be described by homogeneous turbulence theory,
nor is it likely that even the descriptive framework
of spectra and correlation functions is appropriate
for such structures (see, e.g., (10).) The existence
of such a scale is implicit in developments such as
WKB theory (15, 1, 5), in which smallness of a scale
separation parameter is required. The scale sepa-
ration parameter of interest for a symmetric radial
solar wind is of the order of \/r for local heliocentric
distance r and wavelengths less than A (6). The scale
associated with the breakdown of homogeneity must
be of the order of r, and will increase with heliocen-
tric distance. However, it is difficult to pinpoint a
single scale at which this breakdown will occur.

A second additional outer scale is of dynamical,
rather than kinematic origin. As the solar wind
plasma and magnetic field are carried outwards, local
dynamical effects spread, destroying memory of the
initial data at the solar wind source surface, and gen-
erating new in situ correlations. The development of
an active MHD cascade (17) is the preeminent ex-
ample of this development. At any given heliocentric
distance, an important limitation is that all points in
the turbulence cannot communicate with each other
instantaneously. Instead, the influence of local tur-
bulence at a point moving in the frame of the mean
solar wind spreads at a rate determined by charac-
teristic MHD speeds. In principle, one can calculate
the size of this region of dynamical influence about
each point in the wind, and thus define a length scale
that might be called the “MHD causality length”.

To date research in solar wind turbulence has not
completely taken into account the nature and influ-
ence of the these additional outer scales. Efforts
along these lines may help to better understand how
local turbulence fits into a more complete picture of
the heliospheric plasma.
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Observations and Conclusions

We have begun an observational analysis of the
outer scales of solar wind fluctuations by using both
Voyager 2 and Omnitape data to compute correlation
scales and zero crossing scales. Correlation scales are
computed according to both integral and e-folding
definitions. The Omnitape correlation functions are
computed from more than 32 years of data. The re-
sults for the correlation function of the N component
are shown in Figure 1. Hour averaged Voyager 2
magnetic field data is organized into 27 day samples,
and the correlation function is computed for the nor-
mal (N) component. For the Omnitape analysis, all
at 1 AU, the resulting estimates are averaged over
the entire span of the dataset. In the case of Voy-
ager data, results are averaged over samples spanning
several solar rotations, providing data points for each
quantity that are spaced by several AU. The results
are given in the Table below.

Data R(AU) | 7 (hours) | 7o (hours)
| | nt e-fold |

Omni N | 1 1.97-3.6 2.5 224

V2 N 1-4 3.15 4.3 26.9

V2 N 4-7 3.2 5.8 25.9

V2 N 7-10 7.6 7.5 72.5

Table of correlation times and zero crossings, in hours
in spacecraft frame. Correlation length and zero crossing
scale are obtained by multiplying by a mean solar wind
speed (=~ 400 km/s). Correlation time given in both
integral and e-folding definition. Range for Omni N
corresponds to slightly different analysis routines.

These results indicate that the correlation scale
generally increases with heliocentric distance, as has
been reported earlier (9). The zero crossing scale also
increases but is considerably larger than the correla-
tion scale and is clearly a distinct scale. Measure-
ments of the correlation scale such as these are a
central constraints in evaluating dynamical theories
of solar wind turbulence (see paper 2.38 these pro-
ceedings, and (13)).
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FIGURE 1. Correlation function of the normal compo-
nent of magnetic fluctuations, from sector-rectified Omni-
tape data, and associated correlation scale (integral form,
Ai, e-folding A.) and zero crossing scale.
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