In-Situ Signatures of Interplanetary Coronal Mass Ejections

Ian G. Richardson, NASA/Goddard Space Flight Center

and

CRESST/Department of Astronomy, University of Maryland, College Park ~Two dozen in-situ signatures frequently (but not necessarily exclusively) associated with ICMEs (solar wind manifestions of coronal mass ejections near the Sun).

Reviews include:

Gosling, J.T.: 1990, In: Russell, C. T., Priest, E. R., Lee, L. C. (eds.), Physics of Magnetic Flux Ropes, AGU Geophys. Monograph 58, 343.

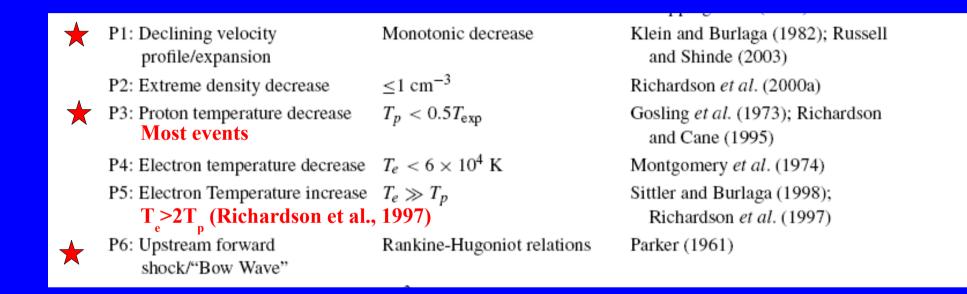
Gosling, J.T.: 2000, In: Dingus, B. L., Kieda, D., Salamon, M. (eds.), Proc. 26th Int. Cosmic Ray Conf., AIP Conf. Proc. 516, 59.

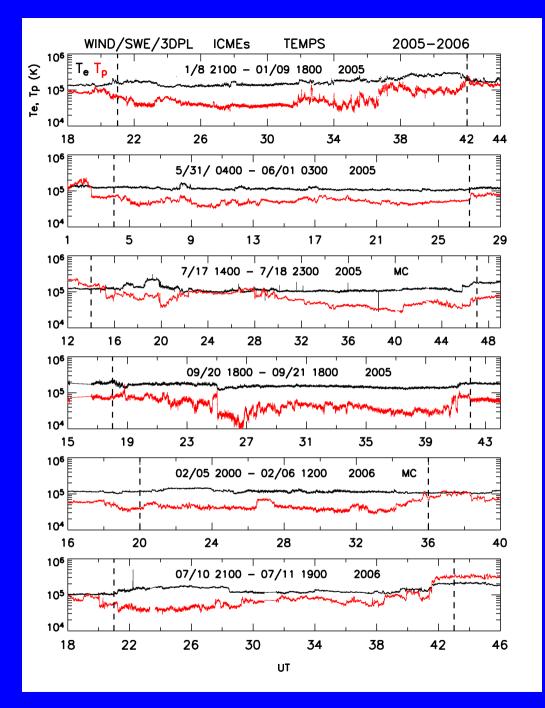
Neugebauer, M., Goldstein, R.: 1997, In: Crooker, N., Joselyn, J.A., Feynman, J. (eds.), Coronal Mass Ejections, AGU Geophys. Monograph 99, 245.

Zurbuchen, T. H., Richardson, I. G.: 2006, Space Sci. Rev. 123, 31.

Signatures of ICMEs (Magnetic Field)

T. H. ZURBUCHEN AND I. G. RICHARDSON


TABLE I


In-situ signatures of ICMEs (description applies to \sim 1 AU heliospheric distance) in the magnetic field (B), plasma dynamics (P), plasma composition (C), plasma waves (W), and suprathermal particles (S)

-	Signature	Description	Selected references
\star	B1: B Rotation	\gg 30°, smooth	Klein and Burlaga (1982)
*	B2: B Enhancement	>10 nT	Hirshberg and Colburn (1969); Klein and Burlaga (1982)
*	B3: B Variance decrease		Pudovkin <i>et al.</i> (1979); Klein and Burlaga (1982)
*	B4: Discontinuity at ICME boundaries		Janoo et al. (1998)
	B5: Field line draping around ICME		Gosling and McComas (1987); McComas <i>et al.</i> (1989)
*	B6: Magnetic clouds ~30% of events	(B1, B2 and $\beta = \frac{\sum nkT}{B^2/(2\mu_0)} < 1$)	Klein and Burlaga (1982); Lepping <i>et al.</i> (1990)

Viseful signature

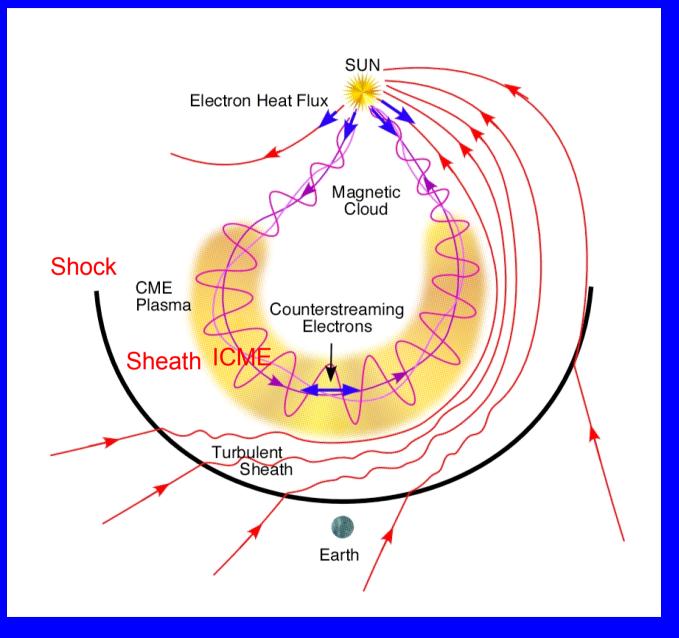
Signatures of ICMEs (Plasma)

Comparison of WIND T_e (black) and T_p (red) in a sample of ICMEs in 2005-2006 (from C. J. Farrugia)

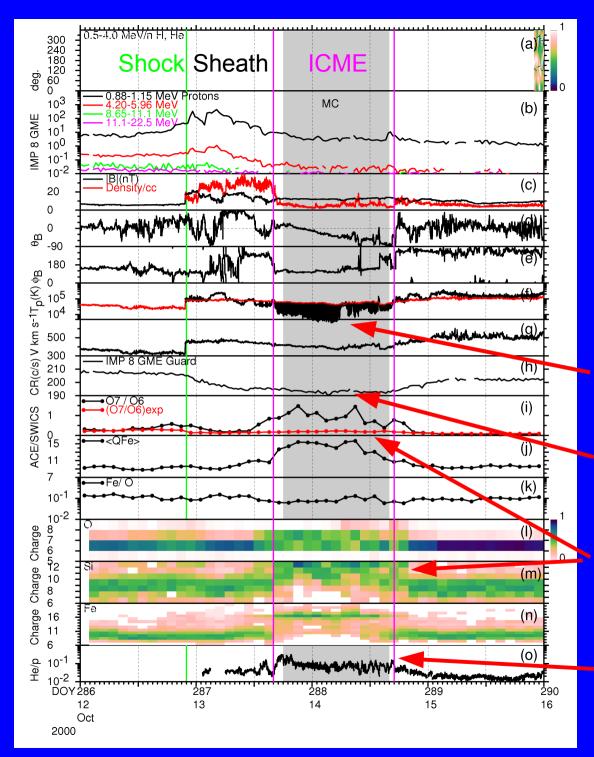
T_e > T_p; (n_ekT_e > n_pkT_p i.e., don't ignore the electron pressure in ICMEs!)

Greater variability in T

 $T_e = T_p$ often occurs close to the ICME boundaries suggested using other data (dashed lines, Richardson and Cane ICME list)


Signatures of ICMEs (Solar Wind Abundances/charge states, Plasma Waves)

	C1: Enhanced α/proton ratio	$He^{2+}/H^{+} > 8\%$	Hirshberg et al. (1972); Borrini et al. (1982a)
*	C2: Elevated oxygen charge states	$O^{7+}/O^{6+} > 1$	Henke <i>et al.</i> (2001); Zurbuchen <i>et al.</i> (2003)
*	C3: Unusually high Fe charge states	$(Q)_{\rm Fe} > 12; Q_{\rm Fe}^{>15+} > 0.01$	Bame <i>et al.</i> (1979); Lepri <i>et al.</i> (2001); Lepri and Zurbuchen (2004)
	C4: Occurrence of He ⁺ Rare; handful of events	$He^{+}/He^{2+} > 0.01$	Schwenn <i>et al.</i> (1980); Gosling <i>et al.</i> (1980); Gloeckler <i>et al.</i> (1999)
\bigstar	C5: Enhancements of Fe/O	$\frac{(Fe/O)_{CME}}{(Fe/O)_{photosphere}} > 5$	Ipavich et al. (1986)
\bigstar	C6: Unusually high ³ He/ ⁴ He	$\frac{({}^{3}\text{He}/{}^{4}\text{He})_{\text{CME}}}{({}^{3}\text{He}/{}^{4}\text{He})_{\text{photosphere}}} > 2$	Ho et al. (2000)
\bigstar	W1: Ion acoustic waves		Fainberg et al. (1996); Lin et al. (1999)


Signatures of ICMEs (Energetic Particles)

		(1999)		
\star	S1: Bidirectional strahl electrons		Gosling et al. (1987)	
★	S2: Bidirectional ~MeV ions	2nd harmonic >1st harmonic	Palmer et al. (1978); Marsden et al. (1987)	
\star	S3: Cosmic ray depletions	Few % at $\sim 1 \mathrm{GeV}$	Forbush (1937); Cane (2000)	
	S4: Bidirectional cosmic rays	2nd harmonic >1st harmonic	Richardson et al. (2000b)	

"Textbook" Configuration of Interplanetary Coronal Mass Ejection and Upstream shock

Zurbuchen & Richardson, SSR, 2006

"Textbook" ICME
Follows shock with a few hours delay (sheath);

•WIND Magnetic cloud (grey shading);

•Low $T_p (< 2 T_{exp})$;

Cosmic ray depression

•Enhanced solar wind ion charge states;

Enhanced He/p;

Signatures ~co-located.

Richardson and Cane, Sol. Phys., 2010

Shock ICMF 300 240 180 120 60 0 (a) deg. Λ 88-1.15 MeV Protons (b) 10² 10¹ 10⁰ 10⁻¹ MP 8 GME 10-2 m h some and when the second sec 10-3 (c) 20 Ω (d mm Mr. M. M. 0 $\theta_{\rm B}$ -90 (e)II 180 CR(c/s) V km s⁻¹T_p(K) ϕ_B 0 10⁵ 104 450 400 350 MP 8 GME Guard (h) 355 345 •O7 / O6 •(O7/O6)exp (i) ACE/SWICS 0 15 <QFe> (j) 11 7 →Fe/ O (k) 10-1 10⁻² 8 7 6 5 2 10 8 7 6 5 2 (I) Charge Charge Charge (m)(n) 16 11 6 (0)He/p 10 10-2 72 DOY 68 69 70 10 12 13 9 11 Mar

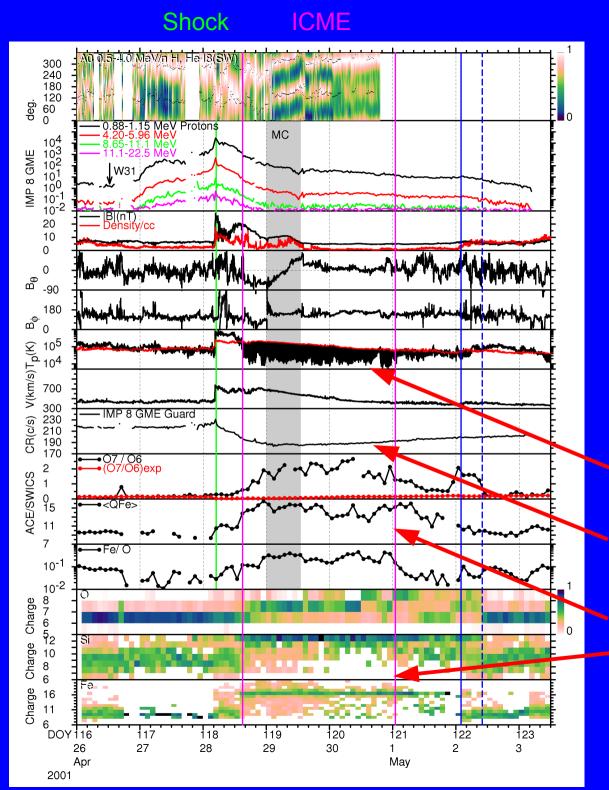
1999

Similar ICME, But No Magnetic Cloud Magnetic Signatures

Follows shock;

•Weak magnetic field, fluctuating direction

•Low T_p


Cosmic ray depression

•Enhanced solar wind ion charge states

Enhanced He/p

•Signatures ~co-located.

Richardson and Cane, Sol. Phys., 2010

Extended (~4 day) region of ICME like plasma following shock/sheath.

 Identified magnetic cloud (grey shading) is only a SMALL
 SUBSTRUCTURE of the total ICME region
 suggested by other
 signatures.

•Low T_p

Cosmic ray depression

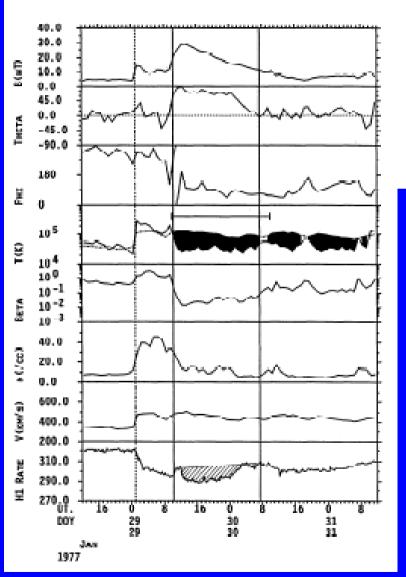
•Enhanced solar wind ion charge states (=> heating to 2-3×10⁶ K) extending ~1 day behind ICME and ~3 days behind MC; Interaction of multiple ICMEs? But the boundaries between component ICMEs are not too obvious across the multiple data sets (also noted by Burlaga et al.)

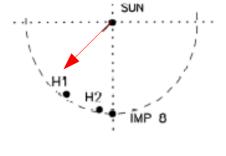
•Extended outflow of plasma heated to several Mk trailing some ICMEs?

Heating process at the Sun? A flare seems too brief!

Are extended outflows observed near the Sun following some CMEs/ICMEs?

•Could heliospheric imager data be used to identify features that correspond to the various in-situ structures and help infer their origin?

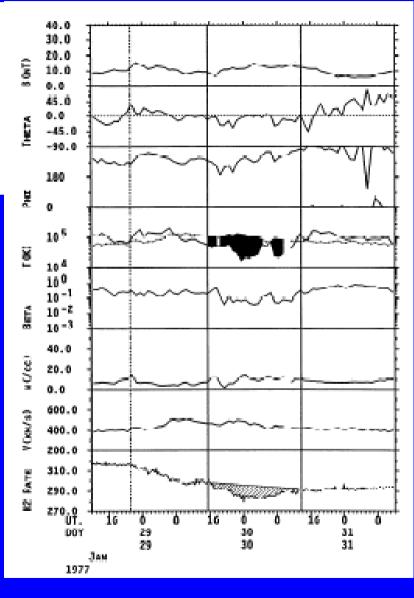

•The view that the in-situ magnetic cloud/flux rope, if present, is THE ICME, and that if no MC is detected, then there is only a glancing encounter with the ICME seems too simplistic.


•Little hope of finding a unique parameter that indicates the presence of an ICME.

January 1977 ICME

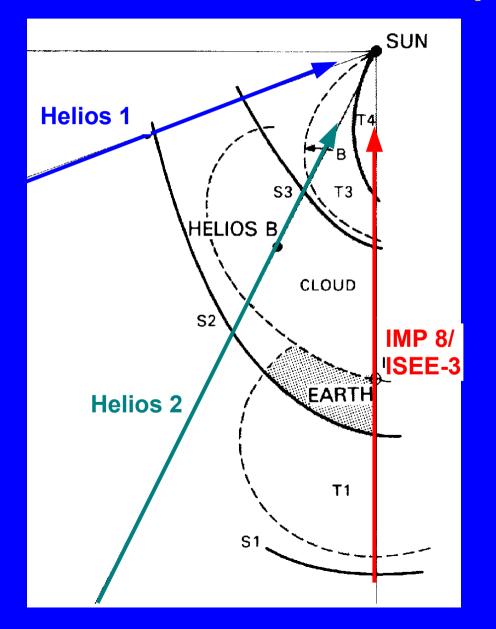
Helios 1: Magnetic Cloud

Helios 2: Non-cloud ICME

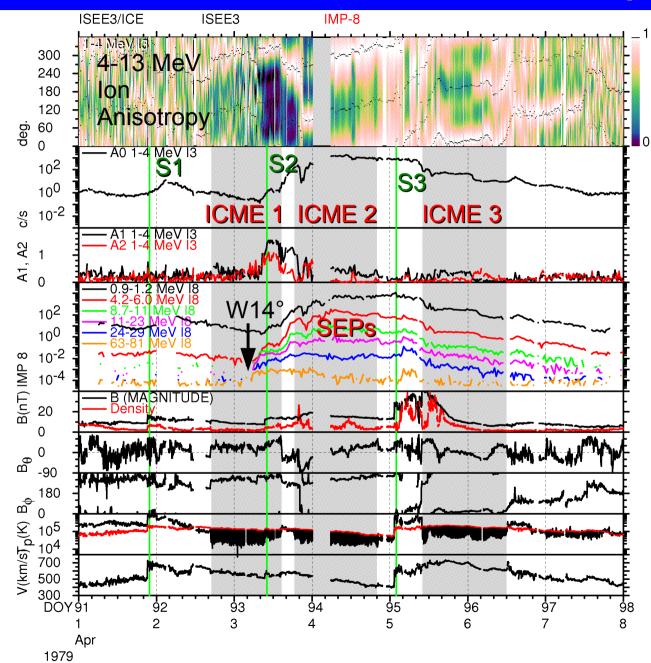

JANUARY 1977

Filament eruption at ~E50°

Helios 1, near eruption longitude, saw a MC;

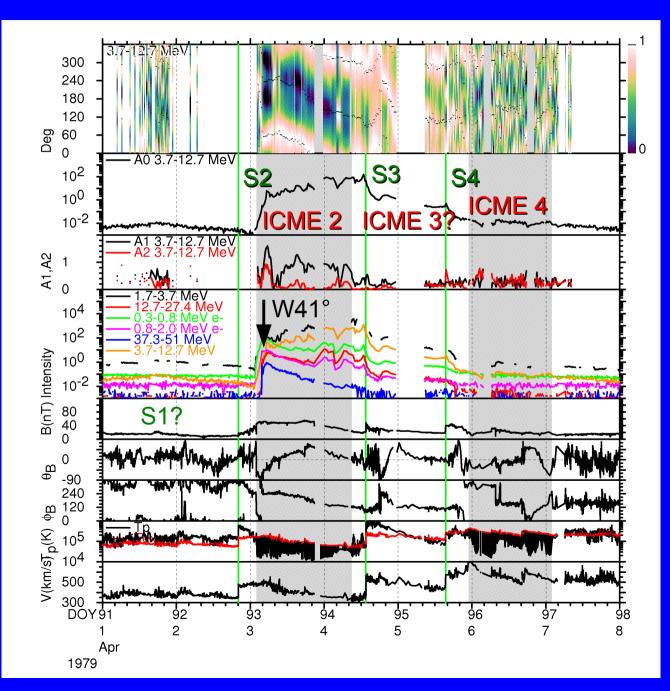

Helios 2 saw a noncloud ICME

Also demonstrates that an MC may be a substructure of an ICME


Cane, Richardson & Wibberenz, 1997

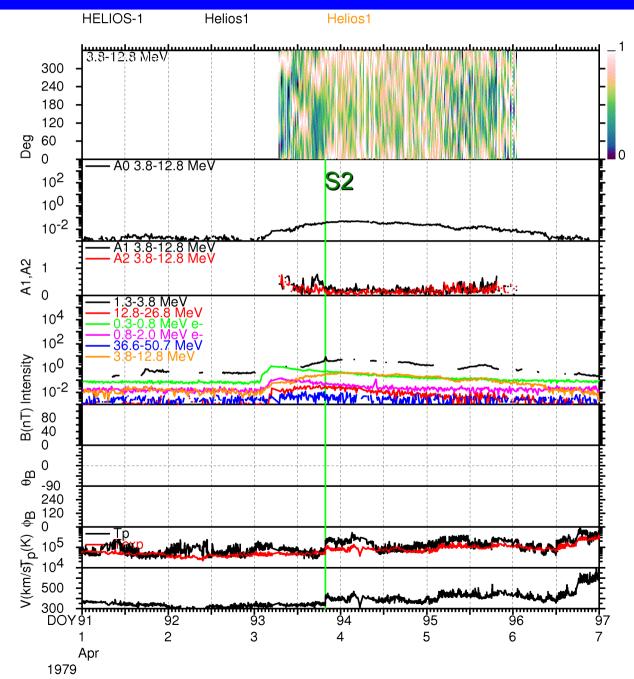
Configuration of Multiple Shocks and ICMEs, April 1979

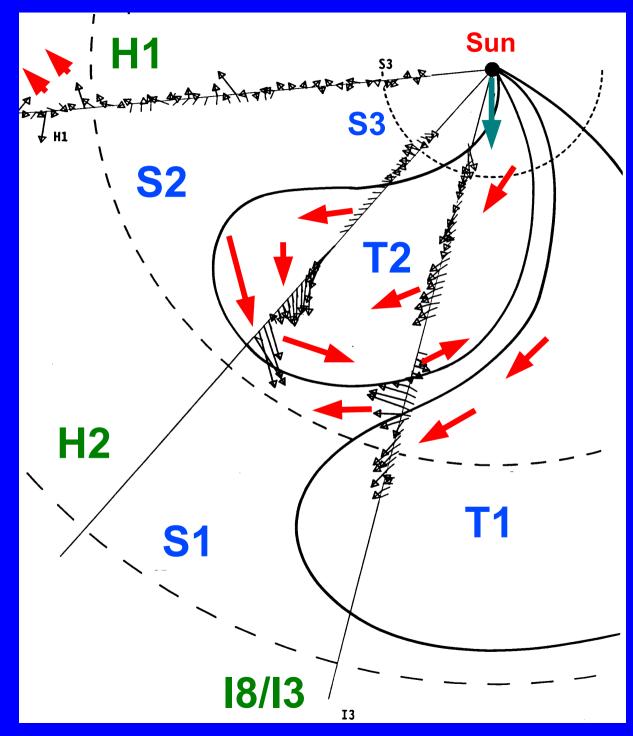
Burlaga et al., 1987


Observations at Earth, April 1-7, 1979

Three shocks (S1-3) followed by ICME drivers

Solar Particle onset on April 3rd from W14° event injected into ICMEs 1 & 2; related to S3 and ICME 3.


Observations at Helios 2 (0.67 AU, E27°)


Three shocks (S2-4) probably followed by ICME drivers

Solar Particle onset on April 3rd from W41° event injected into ICME 2, but flow is from the EAST!

Observations at Helios 1 (0.74 AU, E70°)

- One shock (S2) (Schwenn); no ICMEs.
- •
- W84° SEP event observed, but weak.

MeV proton Flows Following April 3, 1979 SEP Event

Note flow pattern in T2 suggestive of looped magnetic field lines.

Richardson and Cane [1996].

What is the relationship of "typical" ICMEs to "small" ICMEs?

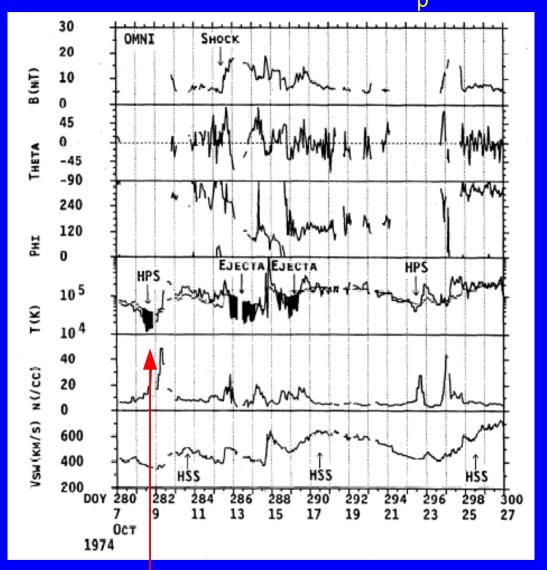
Several studies have been made of smaller (shorter duration) structures that share some of the features of ICMEs.

e.g., Cartwright and Moldwin, JGR, in press, 2010:

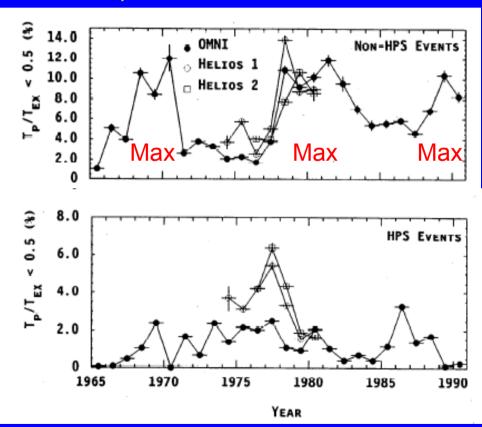
- Small scale flux ropes, 10s of minutes-few hours,
- No expansion signature or depressed Tp.
- Formed in the solar wind or at the corona (or both)?
- Most often found near sector boundaries.
- Reconnection across the HCS or streamer blobs?

STEREO: ICMEs associated with "blobs" moving out through the HPS e.g., Kilpua et al.

 Are these the same phenomenon as "typical" ICMEs but on a smaller scale, or a different phenomena?


•Are the interplanetary signatures distinct in some way(s)?

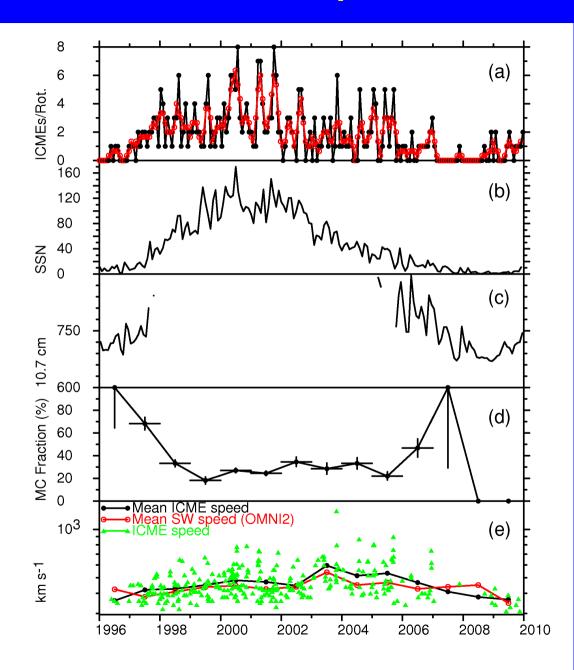
•Should an "ICME" require a CME/energetic eruption/flare at the Sun? But many "typical" ICMEs don't have visible CMEs (at least in LASCO) and may lack clear solar signatures.


•If there are different production processes at the Sun, should the interplanetary manifestations all be called ICMEs?

•But, if coronal material is ejected, why not call them all ICMEs?

Richardson and Cane, JGR, 1995: Low T regions in the HPS

Occurrence rate of low T_p NOT associated with the HPS (1965-1990)


Abnormally low T_p regions in the vicinity of the heliospheric plasma sheet

Occurrence rate of low T_p associated with the HPS

Association of low T_p regions within and outside the HPS with various "ICME-like" Signatures (Richardson and Cane, 1995)

Table 3. Number of $T_p/T_{ex} \le 0.5$ Plasma Events Associated with Ejecta Signatures, Cosmic Ray Decreases, and Shocks,and Chance Association RatesNon HPSHPS							
		All Events		Non-HPS		HPS	
· · · · · · · · · · · · · · · · · · ·		All	≥10 hours	All	≥ 10 hours	All	≥ 10 hours
Bidirectional ~1 MeV	ion flows						
IMP 8/ISEE 3 ^a	Bidirectional						
Events	Diuliectional	197/554	123/184	161/406	103/153	36/148	20/31
Chance rate	~1 MeV lons	10%	20%	11%	21%	8%	16%
Observed/chance		3.5	3.4	3.5	3.2	3.1	4.1
Helios 1		150/570	72/1/20	115005	52/11/5	27/104	20/54
Events		152/570	72/169	115/386	52/115	37/184	20/54
Chance rate		9%	23%	16%	24%	9%	21%
Observed/chance		2.9	1.9	3.1	1.9	2.3	1.8
Helios 2		72/246	39/77	48/159	26/49	24/87	13/28
Events Chance rate		5%	13%	48/159	14%	5%	13/28
Observed/chance		5.9	3.9	5.4	3.7	5.9	4.0
	olar wind electron heat fluxes	5.9	5.7	5.4	5.7		4.0
Events	Bidirectional	65/240	44/97	60/188	43/86	5/52	1/11
Chance rate	Dianeotional	15%	22%	16%	23%	12%	18%
Observed/chance	e heat flux	1.8	2.1	2.0	2.2	0.84	0.50 ± 0.50
ISEE 3 electron temp	erature depression						
$(T_e \le 10^5 \text{ K})^{-1}$	I						
Events	T depression	102/226	66/96	75/176	58/85	27/50	8/11
Chance rate		. 19%	31%	20%	31%	13%	24%
Observed/chance		2.4	2.3	2.1	2.2	4.2	3.1
ISEE 3 local electron	temperature depression ^b						
Events		164/232	77/94	124/182	68/84	40/50	9/10
Magnetic cloud	Magnetic						
Events	•	41/566	24/191	35/401	22/148	6/165	2/43
Chance rate	Cloud	1.4%	2.0%	1.5%	2.0%	1.3%	1.7%
Observed/chance		5.2	6.3	5.8	7.5	2.8 ± 0.5	2.7 ± 1.4
He abundance enhance		42/221	20/107	41/215	20/75	2/116	2/22
Events Chance rate	He	43/331 1.2%	30/107 2.8%	41/215 1.4%	28/75 3.0%	$\frac{2}{116}$	2/32 2.1%
Observed/chance	onhoncomont	10.8	10.0	13.6	12.4	1.8 ± 0.9	3.0 ± 1.5
Ion count rate depres	sion >60 MeV/amu [*]	10.0	10.0	15.0	14.7	1.0 = 0.7	5.0 = 1.5
IMP 8 Events	and - of the quille	188/666	109/199	172/464	102/162	16/202	7/37
Helios 1 Events		180/680	83/176	143/436	72/118	37/244	11/58
		117/398	56/104	85/232	42/62	32/166	14/42
Helios 2 Events Neutron monitor decr Events	ease $\geq 4\%$						
Events	GCR	80/909	47/267	76/660	46/219	4/249	1/48
Chance rate		4.2%	5.5%	4.3%	5.6%	3.9%	5.0%
Observed/chance	decrease	2.1	3.2	2.7	3.8	0.4 ± 0.1	0.4 ± 0.4
Shock/sc within ~ 1.5 days before event							
Omni Events Following IP shock? 164/909 96/267 155/659 94/219 9/249 2/48							
			96/267	155/659	94/219	9/249	2/48
Chance rate		13%	17%	14%	18%	12%	16%
Observed/chance		1.4	2.1	1.7	2.4	0.3 ± 0.05	0.3 ± 0.1
Helios 1							

ICME Properties 1996-2009

ICME rate/solar rotation

Sunspot number

10.7 cm flux

Fraction of magnetic clouds

Mean ICME and solar wind speeds, ICME speeds

Richardson and Cane, Sol. Phys., 2010

Summary

•There are a plethora of ICME signatures resulting from processes at the Sun during CME formation and ejection and subsequent propagation through the solar wind.

•The individual signatures may or may not coexist. Not necessarily a "problem", but a sign of interesting physics.

•Though there is an emphasis on magnetic clouds/flux ropes because they can be easily modeled in the solar wind and at the Sun, ICME-like material with multiple signatures may be found well beyond these structures.

•Heliospheric imaging and in-situ observations at multiple S/C may help to understand the origin of structures within ICMEs.

•What is the relationship of "typical" ICMEs with smaller structures with some ICME-like signatures?