## Reconstructing CMEs with Coordinated Imaging and In Situ Observations: Global Structure, Kinematics, and I mplications for Space Weather Forecasting

Ying Liu
(liuxying@ssl.berkeley.edu)
A. Thernisien, J. A. Davies, J. G. Luhmann, A.

Vourlidas, S. D. Bale, and R. P. Lin

## Outline

- What properties can we compare between imaging observations and in situ measurements?
- How do we determine the properties and make the comparison?
- What can we learn from the comparison for CME research and space weather forecasting?


## Forward modeling of CME images



- Geometric model with a rope morphology (density only);
- Calculate Thomson scattering and compare with images observed by STEREO A, B and SOHO;
- Can give the global structure of CMEs including rope orientation and propagation direction, which can then be compared with in situ measurements.

Thernisien et al., ApJ, 2006

## Geometric triangulation of imaging observations

Liu et al., ApJ, 2010a, 2010b


$$
\left\{\begin{array}{l}
\frac{r \sin \left(\alpha_{A}+\beta_{A}\right)}{\sin \alpha_{A}}=d_{A} \\
\frac{r \sin \left(\alpha_{B}+\beta_{B}\right)}{\sin \alpha_{B}}=d_{B} \quad \Rightarrow \\
\beta_{A}+\beta_{B}=\gamma
\end{array}\right.
$$

$\tan \beta_{A}=\frac{\sin \alpha_{A} \sin \left(\alpha_{B}+\gamma\right)-f \sin \alpha_{A} \sin \alpha_{B}}{\sin \alpha_{A} \cos \left(\alpha_{B}+\gamma\right)+f \cos \alpha_{A} \sin \alpha_{B}}$

- Can determine the propagation direction, radial distance and velocity continuously out to 1 AU;
- The predicted arrival time and velocity at 1 AU can then be compared with in situ data.


## In situ measurements and reconstruction



- Reconstruction with in situ data can give the flux rope orientation and cross section;
- A rough knowledge of propagation direction relative to the ecliptic plane may also be obtained;
- The in situ arrival time, velocity, propagation direction and flux-rope orientation can then be compared with those determined from imaging data.

Hu \& Sonnerup, 2002; Liu et al., ApJL, 2008

## The 2007 Nov 15 - 19 CME / ICME

Two views of the CME: Separation between STEREO A and B is about 40 deg.


## The 2007 Nov 15 - 19 CME / ICME



CME image forward modeling:

- Propagation direction: 2 deg east of the Sun-Earth line, and $\pm 1$ deg with respect to the ecliptic plane;
- Flux-rope tilt angle: 36 deg clockwise from the ecliptic.


## The 2007 Nov 15 - 19 CME / ICME




Geometric triangulation:

- The Nov 15 CME (2nd feature) has a propagation direction changing from eastward to westward and then staying at 1 deg west of the Sun-Earth line;
- Its speed first increases and then decreases;
- The other two CMEs may be too west to reach the Earth;
- Track fitting is also performed and compared to triangulation.


## The 2007 Nov 15 - 19 CME / ICME

## In situ measurements:

- An ICME was observed at the Earth and STEREO B but missed A;
- Only the Nov 15 CME shows the right arrival time and propagation direction.





## The 2007 Nov 15 - 19 CME / ICME

In situ reconstruction:

- The reconstruction gives an axis tilt angle of about -1.4 deg (RTN) at Earth and
-33.8 deg at B (recall the tilt angle given by image modeling is -36 deg );
- The maximum axial field is below the ecliptic, so the overall propagation direction is likely to be southward at 1 AU (recall $\pm 1$ deg from image modeling).



## The 2008 Dec 12 - 17 CME / ICME

Two views of the CME: Separation between STEREO A and B is about 86.3 deg.


## The 2008 Dec 12-17 CME / ICME



CME image forward modeling:

- Propagation direction: 10 deg west of the Sun-Earth line, and 8 deg with respect to the ecliptic plane;
- Flux-rope tilt angle: 53 deg clockwise from the ecliptic.


## The 2008 Dec 12 - 17 CME / ICME




Geometric triangulation:

- Two tracks associated with the CME can be identified up to 50 deg;
- The propagation direction first changes from eastward to westward and then is roughly within 10 deg of the Sun-Earth line;
- The features can be continuously tracked up to 0.7 AU (without projection);
- Its speed first increases and then decreases.


## The 2008 Dec 12-17 CME / ICME

In situ measurements:

- A magnetic cloud was observed at the Earth but likely missed STEREO A and B;
- Predicted arrival times (hatched area) of CME leading and trailing edges bracket the cloud and are coincident with enhanced density regions;
- Predicted radial velocities are also well confirmed by the in situ measurements;
- The flux rope cannot be imaged due to its low density.



## The 2008 Dec 12 - 17 CME / ICME

In situ reconstruction:

- The reconstruction gives an axis tilt angle of about -6.4 deg (RTN) at Earth (recall - 53 deg from image modeling);
- The maximum axial field is above the ecliptic, so the overall propagation direction is likely to be northward at 1 AU (recall 8 deg from image modeling).



## More events: CME catalog

http:/ / sprg.ssl.berkeley.edu/~liuxying/CME_catalog.htm


- Movies made of composite images from SECCHI with FOVs to scale, which show CME evolution in virtually the entire Sun-Earth space;
- Time-elongation maps ( J maps) along the ecliptic plane showing tracks associated with the CMEs;
- CME kinematics in the ecliptic plane (propagation direction, radial distance and velocity) derived from triangulation analysis (continuously from the Sun all the way out to 1 AU );
- Plots showing ICMEs/magnetic clouds (and shocks if any) observed in situ at 1 AU and comparison with triangulation analysis (on predicted arrival time and radial velocity);
- In situ reconstruction results (flux-rope cross section and orientation) from the GradShafranov method.


## Accuracy of geometric triangulation predictions



- The arrival time prediction is good to a few hours;
- The predicted velocity also agrees with in situ measurements at 1 AU ;
- Check out the catalog for details!


## Westward motion of CMEs at acceleration phase



- All these CMEs undergo a westward motion with respect to the Sun-Earth at their acceleration phase;
- We suggest this as a universal feature produced by the magnetic field connecting the Sun and CMEs and rotation of the Sun;
- The westward motion would mainly occur within the Alfven radius $\mathrm{r}_{\mathrm{A}}$ when

$$
\rho v^{2} / 2 \leq B^{2} / 2 \mu_{0}
$$

- For the present CMEs

$$
r_{\mathrm{A}} \sim 10-20 r_{\mathrm{s}}
$$

## Recap of the main points

- CME propagation directions can be determined to a relatively good precision as shown by the consistency between different methods;
- The geometric triangulation technique shows a promising capability to link solar observations with corresponding in situ signatures at 1 AU and to predict CME arrival at the Earth;
- The flux-rope orientation derived from imaging observations may have a large uncertainty as indicated by the comparison with in situ reconstruction;
- The flux rope within CMEs, which has the most hazardous southward magnetic field, cannot be imaged at large distances due to expansion;
- We find that CMEs undergo a westward migration with respect to the Sun-Earth line at their acceleration phase, which we suggest as a universal feature produced by the magnetic field connecting the Sun and ejecta.


## Concept for future missions at L4 and L5



Five Lagrangian points of the Sun-Earth system:

- L4 and L5 have the same orbit as the Earth but lie at 60 degrees ahead and behind;
- L4 and L5 are resistant to gravitational perturbations; - Apply the same triangulation concept to future missions at L4 and L5.



## Future work

CME studies with coordinated imaging, Faraday rotation and in situ observations:


1
White-light images give density structure


1
Faraday rotation
gives magnetic field structure
(Liu et al., ApJ, 2007)


In situ data
give constraints

